On a generalization of the Pell sequence
Jhon J. Bravo; Jose L. Herrera; Florian Luca
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 199-213
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBravo, Jhon J., Herrera, Jose L., and Luca, Florian. "On a generalization of the Pell sequence." Mathematica Bohemica 146.2 (2021): 199-213. <http://eudml.org/doc/298178>.
@article{Bravo2021,
abstract = {The Pell sequence $(P_n)_\{n=0\}^\{\infty \}$ is the second order linear recurrence defined by $P_n=2P_\{n-1\}+P_\{n-2\}$ with initial conditions $P_0=0$ and $P_1=1$. In this paper, we investigate a generalization of the Pell sequence called the $k$-generalized Pell sequence which is generated by a recurrence relation of a higher order. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers are also deduced.},
author = {Bravo, Jhon J., Herrera, Jose L., Luca, Florian},
journal = {Mathematica Bohemica},
keywords = {generalized Fibonacci number; generalized Pell number; recurrence sequence},
language = {eng},
number = {2},
pages = {199-213},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a generalization of the Pell sequence},
url = {http://eudml.org/doc/298178},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Bravo, Jhon J.
AU - Herrera, Jose L.
AU - Luca, Florian
TI - On a generalization of the Pell sequence
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 199
EP - 213
AB - The Pell sequence $(P_n)_{n=0}^{\infty }$ is the second order linear recurrence defined by $P_n=2P_{n-1}+P_{n-2}$ with initial conditions $P_0=0$ and $P_1=1$. In this paper, we investigate a generalization of the Pell sequence called the $k$-generalized Pell sequence which is generated by a recurrence relation of a higher order. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers are also deduced.
LA - eng
KW - generalized Fibonacci number; generalized Pell number; recurrence sequence
UR - http://eudml.org/doc/298178
ER -
References
top- Bicknell, M., A primer on the Pell sequence and related sequences, Fibonacci Q. 13 (1975), 345-349. (1975) Zbl0319.10013MR0387173
- Bravo, J. J., Luca, F., 10.5486/PMD.2013.5390, Publ. Math. 82 (2013), 623-639. (2013) Zbl1274.11035MR3066434DOI10.5486/PMD.2013.5390
- Brent, R. P., 10.2307/2153583, Math. Comput. 63 (1994), 389-401. (1994) Zbl0809.11083MR1216256DOI10.2307/2153583
- Dresden, G. P. B., Du, Z., A simplified Binet formula for -generalized Fibonacci numbers, J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. (2014) Zbl1360.11031MR3181762
- Horadam, A. F., Applications of modified Pell numbers to representations, Ulam Q. 3 (1995), 35-53. (1995) Zbl0874.11023MR1368399
- Kalman, D., Generalized Fibonacci numbers by matrix methods, Fibonacci Q. 20 (1982), 73-76. (1982) Zbl0472.10016MR0660765
- Kiliç, E., On the usual Fibonacci and generalized order- Pell numbers, Ars Comb. 88 (2008), 33-45. (2008) Zbl1224.11024MR2426404
- Kiliç, E., 10.1016/j.ejc.2007.03.004, Eur. J. Comb. 29 (2008), 701-711. (2008) Zbl1138.11004MR2397350DOI10.1016/j.ejc.2007.03.004
- Kiliç, E., Taşci, D., The linear algebra of the Pell matrix, Bol. Soc. Mat. Mex., III. Ser. 11 (2005), 163-174. (2005) Zbl1092.05004MR2207722
- Kiliç, E., Taşci, D., 10.11650/twjm/1500404581, Taiwanese J. Math. 10 (2006), 1661-1670. (2006) Zbl1123.11005MR2275152DOI10.11650/twjm/1500404581
- Koshy, T., 10.1002/9781118033067, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (2001). (2001) Zbl0984.11010MR1855020DOI10.1002/9781118033067
- Lee, G.-Y., Lee, S.-G., Kim, J.-S., Shin, H.-K., The Binet formula and representations of -generalized Fibonacci numbers, Fibonacci Q. 39 (2001), 158-164. (2001) Zbl0989.11008MR1829526
- Marques, D., On -generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23-31. (2015) Zbl1369.11014MR3410879
- E. P. Miles, Jr., 10.2307/2308649, Am. Math. Mon. 67 (1960), 745-752. (1960) Zbl0103.27203MR0123521DOI10.2307/2308649
- Muskat, J. B., 10.2307/2152961, Math. Comput. 61 (1993), 365-372. (1993) Zbl0781.11006MR1192974DOI10.2307/2152961
- Wolfram, D. A., Solving generalized Fibonacci recurrences, Fibonacci Q. 36 (1998), 129-145. (1998) Zbl0911.11014MR1622060
- Wu, Z., Zhang, H., On the reciprocal sums of higher-order sequences, Adv. Difference Equ. 2013 (2013), Paper No. 189, 8 pages 9999DOI99999 10.1186/1687-1847-2013-189 . (2013) Zbl1390.11042MR3084191
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.