On the Waring-Goldbach problem for one square and five cubes in short intervals

Fei Xue; Min Zhang; Jinjiang Li

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 563-589
  • ISSN: 0011-4642

Abstract

top
Let N be a sufficiently large integer. We prove that almost all sufficiently large even integers n [ N - 6 U , N + 6 U ] can be represented as n = p 1 2 + p 2 3 + p 3 3 + p 4 3 + p 5 3 + p 6 3 , p 1 2 - N 6 U , p i 3 - N 6 U , i = 2 , 3 , 4 , 5 , 6 , where U = N 1 - δ + ε with δ 8 / 225 .

How to cite

top

Xue, Fei, Zhang, Min, and Li, Jinjiang. "On the Waring-Goldbach problem for one square and five cubes in short intervals." Czechoslovak Mathematical Journal 71.2 (2021): 563-589. <http://eudml.org/doc/298200>.

@article{Xue2021,
abstract = {Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as \[ n=p\_1^2+p\_2^3+p\_3^3+p\_4^3+p\_5^3+p\_6^3, \Bigl | p\_1^2-\dfrac\{N\}\{6\}\Bigr | \le U, \quad \Bigl | p\_i^3-\dfrac\{N\}\{6\}\Bigr |\le U, \quad i=2,3,4,5,6, \] where $U=N^\{1-\delta +\varepsilon \}$ with $\delta \le 8/225$.},
author = {Xue, Fei, Zhang, Min, Li, Jinjiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval},
language = {eng},
number = {2},
pages = {563-589},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Waring-Goldbach problem for one square and five cubes in short intervals},
url = {http://eudml.org/doc/298200},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Xue, Fei
AU - Zhang, Min
AU - Li, Jinjiang
TI - On the Waring-Goldbach problem for one square and five cubes in short intervals
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 563
EP - 589
AB - Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as \[ n=p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3, \Bigl | p_1^2-\dfrac{N}{6}\Bigr | \le U, \quad \Bigl | p_i^3-\dfrac{N}{6}\Bigr |\le U, \quad i=2,3,4,5,6, \] where $U=N^{1-\delta +\varepsilon }$ with $\delta \le 8/225$.
LA - eng
KW - Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval
UR - http://eudml.org/doc/298200
ER -

References

top
  1. Cai, Y., 10.1007/s11139-013-9486-y, Ramanujan J. 34 (2014), 57-72. (2014) Zbl1304.11121MR3210255DOI10.1007/s11139-013-9486-y
  2. Hua, L. K., 10.1090/mmono/013, Translations of Mathematical Monographs 13. American Mathematical Society, Providence (1965). (1965) Zbl0192.39304MR0194404DOI10.1090/mmono/013
  3. Kumchev, A. V., 10.1142/9789814452458_0007, Number Theory: Arithmetic in Shangri-La Series on Number Theory and Its Applications 8. World Scientific, Hackensack (2013), 116-131. (2013) Zbl1368.11095MR3089013DOI10.1142/9789814452458_0007
  4. Li, J., Zhang, M., 10.1142/S1793042118501476, Int. J. Number Theory 14 (2018), 2425-2440. (2018) Zbl06940656MR3855467DOI10.1142/S1793042118501476
  5. Liu, J., 10.1093/qmath/hag028, Q. J. Math. 54 (2003), 453-462. (2003) Zbl1080.11071MR2031178DOI10.1093/qmath/hag028
  6. Pan, C., Pan, C., Goldbach Conjecture, Science Press, Beijing (1992). (1992) Zbl0849.11080MR1287852
  7. Sinnadurai, J. S.-C. L., 10.1093/qmath/16.4.289, Q. J. Math., Oxf. II. Ser. 16 (1965), 289-296. (1965) Zbl0144.28101MR0186650DOI10.1093/qmath/16.4.289
  8. Stanley, G. K., 10.1112/plms/s2-31.1.512, Proc. Lond. Math. Soc. (2) 31 (1930), 512-553 9999JFM99999 56.0174.01. (1930) MR1577483DOI10.1112/plms/s2-31.1.512
  9. Stanley, G. K., 10.1112/jlms/s1-6.3.194, J. London Math. Soc. 6 (1931), 194-197. (1931) Zbl0002.18203MR1574741DOI10.1112/jlms/s1-6.3.194
  10. Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Oxford University Press, New York (1986). (1986) Zbl0601.10026MR0882550
  11. Vaughan, R. C., 10.1112/plms/s3-52.3.445, Proc. Lond. Math. Soc., III. Ser. 52 (1986), 445-463. (1986) Zbl0601.10035MR0833645DOI10.1112/plms/s3-52.3.445
  12. Vaughan, R. C., 10.1093/qmath/37.1.117, Q. J. Math., Oxf. II. Ser. 37 (1986), 117-127. (1986) Zbl0589.10047MR0830635DOI10.1093/qmath/37.1.117
  13. Vaughan, R. C., 10.1017/CBO9780511470929, Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11046MR1435742DOI10.1017/CBO9780511470929
  14. Vinogradov, I. M., Elements of Number Theory, Dover Publications, New York (1954). (1954) Zbl0057.28201MR0062138
  15. Watson, G. L., 10.1112/jlms/s2-5.2.215, J. Lond. Math. Soc., II. Ser. 5 (1972), 215-218. (1972) Zbl0241.10032MR0314787DOI10.1112/jlms/s2-5.2.215
  16. Wooley, T. D., 10.1093/qjmath/53.1.111, Q. J. Math. 53 (2002), 111-118. (2002) Zbl1015.11049MR1887673DOI10.1093/qjmath/53.1.111
  17. Zhang, M., Li, J., 10.1142/S1793042118501488, Int. J. Number Theory 14 (2018), 2441-2472. (2018) Zbl06940657MR3855468DOI10.1142/S1793042118501488
  18. Zhao, L., 10.1112/plms/pdt072, Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. (2014) Zbl1370.11116MR3218320DOI10.1112/plms/pdt072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.