On the Waring-Goldbach problem for one square and five cubes in short intervals
Fei Xue; Min Zhang; Jinjiang Li
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 563-589
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXue, Fei, Zhang, Min, and Li, Jinjiang. "On the Waring-Goldbach problem for one square and five cubes in short intervals." Czechoslovak Mathematical Journal 71.2 (2021): 563-589. <http://eudml.org/doc/298200>.
@article{Xue2021,
abstract = {Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as \[ n=p\_1^2+p\_2^3+p\_3^3+p\_4^3+p\_5^3+p\_6^3, \Bigl | p\_1^2-\dfrac\{N\}\{6\}\Bigr | \le U, \quad \Bigl | p\_i^3-\dfrac\{N\}\{6\}\Bigr |\le U, \quad i=2,3,4,5,6, \]
where $U=N^\{1-\delta +\varepsilon \}$ with $\delta \le 8/225$.},
author = {Xue, Fei, Zhang, Min, Li, Jinjiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval},
language = {eng},
number = {2},
pages = {563-589},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Waring-Goldbach problem for one square and five cubes in short intervals},
url = {http://eudml.org/doc/298200},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Xue, Fei
AU - Zhang, Min
AU - Li, Jinjiang
TI - On the Waring-Goldbach problem for one square and five cubes in short intervals
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 563
EP - 589
AB - Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as \[ n=p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3, \Bigl | p_1^2-\dfrac{N}{6}\Bigr | \le U, \quad \Bigl | p_i^3-\dfrac{N}{6}\Bigr |\le U, \quad i=2,3,4,5,6, \]
where $U=N^{1-\delta +\varepsilon }$ with $\delta \le 8/225$.
LA - eng
KW - Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval
UR - http://eudml.org/doc/298200
ER -
References
top- Cai, Y., 10.1007/s11139-013-9486-y, Ramanujan J. 34 (2014), 57-72. (2014) Zbl1304.11121MR3210255DOI10.1007/s11139-013-9486-y
- Hua, L. K., 10.1090/mmono/013, Translations of Mathematical Monographs 13. American Mathematical Society, Providence (1965). (1965) Zbl0192.39304MR0194404DOI10.1090/mmono/013
- Kumchev, A. V., 10.1142/9789814452458_0007, Number Theory: Arithmetic in Shangri-La Series on Number Theory and Its Applications 8. World Scientific, Hackensack (2013), 116-131. (2013) Zbl1368.11095MR3089013DOI10.1142/9789814452458_0007
- Li, J., Zhang, M., 10.1142/S1793042118501476, Int. J. Number Theory 14 (2018), 2425-2440. (2018) Zbl06940656MR3855467DOI10.1142/S1793042118501476
- Liu, J., 10.1093/qmath/hag028, Q. J. Math. 54 (2003), 453-462. (2003) Zbl1080.11071MR2031178DOI10.1093/qmath/hag028
- Pan, C., Pan, C., Goldbach Conjecture, Science Press, Beijing (1992). (1992) Zbl0849.11080MR1287852
- Sinnadurai, J. S.-C. L., 10.1093/qmath/16.4.289, Q. J. Math., Oxf. II. Ser. 16 (1965), 289-296. (1965) Zbl0144.28101MR0186650DOI10.1093/qmath/16.4.289
- Stanley, G. K., 10.1112/plms/s2-31.1.512, Proc. Lond. Math. Soc. (2) 31 (1930), 512-553 9999JFM99999 56.0174.01. (1930) MR1577483DOI10.1112/plms/s2-31.1.512
- Stanley, G. K., 10.1112/jlms/s1-6.3.194, J. London Math. Soc. 6 (1931), 194-197. (1931) Zbl0002.18203MR1574741DOI10.1112/jlms/s1-6.3.194
- Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Oxford University Press, New York (1986). (1986) Zbl0601.10026MR0882550
- Vaughan, R. C., 10.1112/plms/s3-52.3.445, Proc. Lond. Math. Soc., III. Ser. 52 (1986), 445-463. (1986) Zbl0601.10035MR0833645DOI10.1112/plms/s3-52.3.445
- Vaughan, R. C., 10.1093/qmath/37.1.117, Q. J. Math., Oxf. II. Ser. 37 (1986), 117-127. (1986) Zbl0589.10047MR0830635DOI10.1093/qmath/37.1.117
- Vaughan, R. C., 10.1017/CBO9780511470929, Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11046MR1435742DOI10.1017/CBO9780511470929
- Vinogradov, I. M., Elements of Number Theory, Dover Publications, New York (1954). (1954) Zbl0057.28201MR0062138
- Watson, G. L., 10.1112/jlms/s2-5.2.215, J. Lond. Math. Soc., II. Ser. 5 (1972), 215-218. (1972) Zbl0241.10032MR0314787DOI10.1112/jlms/s2-5.2.215
- Wooley, T. D., 10.1093/qjmath/53.1.111, Q. J. Math. 53 (2002), 111-118. (2002) Zbl1015.11049MR1887673DOI10.1093/qjmath/53.1.111
- Zhang, M., Li, J., 10.1142/S1793042118501488, Int. J. Number Theory 14 (2018), 2441-2472. (2018) Zbl06940657MR3855468DOI10.1142/S1793042118501488
- Zhao, L., 10.1112/plms/pdt072, Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. (2014) Zbl1370.11116MR3218320DOI10.1112/plms/pdt072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.