Piecewise hereditary algebras under field extensions

Jie Li

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1025-1034
  • ISSN: 0011-4642

Abstract

top
Let A be a finite-dimensional k -algebra and K / k be a finite separable field extension. We prove that A is derived equivalent to a hereditary algebra if and only if so is A k K .

How to cite

top

Li, Jie. "Piecewise hereditary algebras under field extensions." Czechoslovak Mathematical Journal 71.4 (2021): 1025-1034. <http://eudml.org/doc/298219>.

@article{Li2021,
abstract = {Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.},
author = {Li, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {piecewise hereditary algebra; Galois extension; directing object},
language = {eng},
number = {4},
pages = {1025-1034},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Piecewise hereditary algebras under field extensions},
url = {http://eudml.org/doc/298219},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Li, Jie
TI - Piecewise hereditary algebras under field extensions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1025
EP - 1034
AB - Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.
LA - eng
KW - piecewise hereditary algebra; Galois extension; directing object
UR - http://eudml.org/doc/298219
ER -

References

top
  1. Assem, I., Simson, D., Skowrońsky, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Chen, X.-W., Ringel, C. M., 10.4171/JNCG/311, J. Noncommut. Geom. 12 (2018), 1425-1444. (2018) Zbl1430.18010MR3896230DOI10.4171/JNCG/311
  3. Dionne, J., Lanzilotta, M., Smith, D., 10.1016/j.jpaa.2008.06.010, J. Pure Appl. Algebra 213 (2009), 241-249. (2009) Zbl1166.16005MR2467401DOI10.1016/j.jpaa.2008.06.010
  4. Happel, D., Reiten, I., 10.1016/S0021-8693(02)00088-1, J. Algebra 256 (2002), 414-432. (2002) Zbl1015.18007MR1939113DOI10.1016/S0021-8693(02)00088-1
  5. Happel, D., Zacharia, D., 10.1007/s00209-007-0268-3, Math. Z. 260 (2008), 177-185. (2008) Zbl1193.16005MR2413349DOI10.1007/s00209-007-0268-3
  6. Kasjan, S., 10.1090/S0002-9939-00-05382-X, Proc. Am. Math. Soc. 128 (2000), 2885-2896. (2000) Zbl0974.16012MR1670379DOI10.1090/S0002-9939-00-05382-X
  7. Li, J., Algebra extensions and derived-discrete algebras, Available at https://arxiv.org/abs/1904.07168 (2019), 8 pages. (2019) 
  8. Li, L., 10.1017/S0017089514000445, Glasg. Math. J. 57 (2015), 509-517. (2015) Zbl1336.16022MR3395330DOI10.1017/S0017089514000445
  9. Lin, Y., Zhou, Z., 10.1017/S0017089515000336, Glasg. Math. J. 58 (2016), 559-571. (2016) Zbl1372.16009MR3530486DOI10.1017/S0017089515000336
  10. Năstăsescu, C., Bergh, M. Van den, Oystaeyen, F. Van, 10.1016/0021-8693(89)90053-7, J. Algebra 123 (1989), 397-413. (1989) Zbl0673.16026MR1000494DOI10.1016/0021-8693(89)90053-7
  11. Rafael, M. D., 10.1080/00927879008823975, Commun. Algebra 18 (1990), 1445-1459. (1990) Zbl0713.18002MR1059740DOI10.1080/00927879008823975
  12. Rickard, J., 10.1112/jlms/s2-39.3.436, J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. (1989) Zbl0642.16034MR1002456DOI10.1112/jlms/s2-39.3.436
  13. Zimmermann, A., 10.1017/S0017089512000237, Glasg. Math. J. 54 (2012), 647-654. (2012) Zbl1258.16014MR2965408DOI10.1017/S0017089512000237

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.