Piecewise hereditary algebras under field extensions
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1025-1034
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Jie. "Piecewise hereditary algebras under field extensions." Czechoslovak Mathematical Journal 71.4 (2021): 1025-1034. <http://eudml.org/doc/298219>.
@article{Li2021,
abstract = {Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.},
author = {Li, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {piecewise hereditary algebra; Galois extension; directing object},
language = {eng},
number = {4},
pages = {1025-1034},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Piecewise hereditary algebras under field extensions},
url = {http://eudml.org/doc/298219},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Li, Jie
TI - Piecewise hereditary algebras under field extensions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1025
EP - 1034
AB - Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.
LA - eng
KW - piecewise hereditary algebra; Galois extension; directing object
UR - http://eudml.org/doc/298219
ER -
References
top- Assem, I., Simson, D., Skowrońsky, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Chen, X.-W., Ringel, C. M., 10.4171/JNCG/311, J. Noncommut. Geom. 12 (2018), 1425-1444. (2018) Zbl1430.18010MR3896230DOI10.4171/JNCG/311
- Dionne, J., Lanzilotta, M., Smith, D., 10.1016/j.jpaa.2008.06.010, J. Pure Appl. Algebra 213 (2009), 241-249. (2009) Zbl1166.16005MR2467401DOI10.1016/j.jpaa.2008.06.010
- Happel, D., Reiten, I., 10.1016/S0021-8693(02)00088-1, J. Algebra 256 (2002), 414-432. (2002) Zbl1015.18007MR1939113DOI10.1016/S0021-8693(02)00088-1
- Happel, D., Zacharia, D., 10.1007/s00209-007-0268-3, Math. Z. 260 (2008), 177-185. (2008) Zbl1193.16005MR2413349DOI10.1007/s00209-007-0268-3
- Kasjan, S., 10.1090/S0002-9939-00-05382-X, Proc. Am. Math. Soc. 128 (2000), 2885-2896. (2000) Zbl0974.16012MR1670379DOI10.1090/S0002-9939-00-05382-X
- Li, J., Algebra extensions and derived-discrete algebras, Available at https://arxiv.org/abs/1904.07168 (2019), 8 pages. (2019)
- Li, L., 10.1017/S0017089514000445, Glasg. Math. J. 57 (2015), 509-517. (2015) Zbl1336.16022MR3395330DOI10.1017/S0017089514000445
- Lin, Y., Zhou, Z., 10.1017/S0017089515000336, Glasg. Math. J. 58 (2016), 559-571. (2016) Zbl1372.16009MR3530486DOI10.1017/S0017089515000336
- Năstăsescu, C., Bergh, M. Van den, Oystaeyen, F. Van, 10.1016/0021-8693(89)90053-7, J. Algebra 123 (1989), 397-413. (1989) Zbl0673.16026MR1000494DOI10.1016/0021-8693(89)90053-7
- Rafael, M. D., 10.1080/00927879008823975, Commun. Algebra 18 (1990), 1445-1459. (1990) Zbl0713.18002MR1059740DOI10.1080/00927879008823975
- Rickard, J., 10.1112/jlms/s2-39.3.436, J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. (1989) Zbl0642.16034MR1002456DOI10.1112/jlms/s2-39.3.436
- Zimmermann, A., 10.1017/S0017089512000237, Glasg. Math. J. 54 (2012), 647-654. (2012) Zbl1258.16014MR2965408DOI10.1017/S0017089512000237
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.