Displaying similar documents to “Piecewise hereditary algebras under field extensions”

On the compositum of all degree d extensions of a number field

Itamar Gal, Robert Grizzard (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We study the compositum k [ d ] of all degree d extensions of a number field k in a fixed algebraic closure. We show k [ d ] contains all subextensions of degree less than d if and only if d 4 . We prove that for d > 2 there is no bound c = c ( d ) on the degree of elements required to generate finite subextensions of k [ d ] / k . Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of d , but that one can take c = d when d is prime. This question was inspired by work of...

When is the order generated by a cubic, quartic or quintic algebraic unit Galois invariant: three conjectures

Stéphane R. Louboutin (2020)

Czechoslovak Mathematical Journal

Similarity:

Let ε be an algebraic unit of the degree n 3 . Assume that the extension ( ε ) / is Galois. We would like to determine when the order [ ε ] of ( ε ) is Gal ( ( ε ) / ) -invariant, i.e. when the n complex conjugates ε 1 , , ε n of ε are in [ ε ] , which amounts to asking that [ ε 1 , , ε n ] = [ ε ] , i.e., that these two orders of ( ε ) have the same discriminant. This problem has been solved only for n = 3 by using an explicit formula for the discriminant of the order [ ε 1 , ε 2 , ε 3 ] . However, there is no known similar formula for n > 3 . In the present paper, we put forward and...

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

Trivialization of 𝒞 ( X ) -algebras with strongly self-absorbing fibres

Marius Dadarlat, Wilhelm Winter (2008)

Bulletin de la Société Mathématique de France

Similarity:

Suppose A is a separable unital 𝒞 ( X ) -algebra each fibre of which is isomorphic to the same strongly self-absorbing and K 1 -injective C * -algebra 𝒟 . We show that A and 𝒞 ( X ) 𝒟 are isomorphic as 𝒞 ( X ) -algebras provided the compact Hausdorff space X is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.

On the unit group of a semisimple group algebra 𝔽 q S L ( 2 , 5 )

Rajendra K. Sharma, Gaurav Mittal (2022)

Mathematica Bohemica

Similarity:

We give the characterization of the unit group of 𝔽 q S L ( 2 , 5 ) , where 𝔽 q is a finite field with q = p k elements for prime p > 5 , and S L ( 2 , 5 ) denotes the special linear group of 2 × 2 matrices having determinant 1 over the cyclic group 5 .

Bicyclic commutator quotients with one non-elementary component

Daniel Mayer (2023)

Mathematica Bohemica

Similarity:

For any number field K with non-elementary 3 -class group Cl 3 ( K ) C 3 e × C 3 , e 2 , the punctured capitulation type ϰ ( K ) of K in its unramified cyclic cubic extensions L i , 1 i 4 , is an orbit under the action of S 3 × S 3 . By means of Artin’s reciprocity law, the arithmetical invariant ϰ ( K ) is translated to the punctured transfer kernel type ϰ ( G 2 ) of the automorphism group G 2 = Gal ( F 3 2 ( K ) / K ) of the second Hilbert 3 -class field of K . A classification of finite 3 -groups G with low order and bicyclic commutator quotient G / G ' C 3 e × C 3 , 2 e 6 , according to the algebraic...

On classifying Laguerre polynomials which have Galois group the alternating group

Pradipto Banerjee, Michael Filaseta, Carrie E. Finch, J. Russell Leidy (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We show that the discriminant of the generalized Laguerre polynomial L n ( α ) ( x ) is a non-zero square for some integer pair ( n , α ) , with n 1 , if and only if ( n , α ) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n ( α ) ( x ) over is the alternating group A n . For example, we establish that for all but finitely many positive integers n 2 ( mod 4 ) , the only α for which the Galois group of L n ( α ) ( x ) over is A n is...

Arithmetic Properties of Generalized Rikuna Polynomials

Z. Chonoles, J. Cullinan, H. Hausman, A.M. Pacelli, S. Pegado, F. Wei (2014)

Publications mathématiques de Besançon

Similarity:

Fix an integer 3 . Rikuna introduced a polynomial r ( x , t ) defined over a function field K ( t ) whose Galois group is cyclic of order , where K satisfies some mild hypotheses. In this paper we define the family of { r n ( x , t ) } n 1 of degree n . The r n ( x , t ) are constructed iteratively from the r ( x , t ) . We compute the Galois groups of the r n ( x , t ) for odd over an arbitrary base field and give applications to arithmetic dynamical systems.