Generalized quadratic operators and perturbations

Khalid Souilah

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 51-63
  • ISSN: 0862-7959

Abstract

top
We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.

How to cite

top

Souilah, Khalid. "Generalized quadratic operators and perturbations." Mathematica Bohemica 147.1 (2022): 51-63. <http://eudml.org/doc/298224>.

@article{Souilah2022,
abstract = {We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.},
author = {Souilah, Khalid},
journal = {Mathematica Bohemica},
keywords = {generalized quadratic operator; perturbation classes problem},
language = {eng},
number = {1},
pages = {51-63},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized quadratic operators and perturbations},
url = {http://eudml.org/doc/298224},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Souilah, Khalid
TI - Generalized quadratic operators and perturbations
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 51
EP - 63
AB - We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.
LA - eng
KW - generalized quadratic operator; perturbation classes problem
UR - http://eudml.org/doc/298224
ER -

References

top
  1. Aiena, P., González, M., 10.1007/s00013-010-0103-7, Arch. Math. 94 (2010), 373-381. (2010) Zbl1187.47014MR2643971DOI10.1007/s00013-010-0103-7
  2. Aleksiejczyk, M., Smoktunowicz, A., On properties of quadratic matrices, Math. Pannonica 11 (2000), 239-248. (2000) Zbl0994.15012MR1791000
  3. Deng, C. Y., 10.1016/j.laa.2009.09.024, Linear Algebra Appl. 432 (2010), 847-856. (2010) Zbl1185.47001MR2577632DOI10.1016/j.laa.2009.09.024
  4. Farebrother, R. W., Trenkler, G., 10.1016/j.laa.2005.08.018, Linear Algebra Appl. 410 (2005), 244-253. (2005) Zbl1086.15504MR2177842DOI10.1016/j.laa.2005.08.018
  5. González, M., 10.1016/S0022-1236(02)00071-X, J. Funct. Anal. 200 (2003), 65-70. (2003) Zbl1036.47007MR1974088DOI10.1016/S0022-1236(02)00071-X
  6. González, M., Martínez-Abejón, A., Pello, J., A survey on the perturbation classes problem for semi-Fredholm and Fredholm operators, Funct. Anal. Approx. Comput. 7 (2015), 75-87. (2015) Zbl1353.47019MR3313269
  7. Lebow, A., Schechter, M., 10.1016/0022-1236(71)90041-3, J. Funct. Anal. 7 (1971), 1-26. (1971) Zbl0209.45002MR0273422DOI10.1016/0022-1236(71)90041-3
  8. Oudghiri, M., Souilah, K., 10.1007/s00009-016-0783-8, Mediterr. J. Math. 13 (2016), 4929-4938. (2016) Zbl1362.47027MR3564542DOI10.1007/s00009-016-0783-8
  9. Oudghiri, M., Souilah, K., 10.1215/20088752-2017-0057, Ann. Funct. Anal. 9 (2018), 426-434. (2018) Zbl06946366MR3835229DOI10.1215/20088752-2017-0057
  10. Petik, T., Uç, M., Özdemir, H., 10.1080/03081087.2015.1016886, Linear Multilinear Algebra 63 (2015), 2430-2439. (2015) Zbl1330.15048MR3402548DOI10.1080/03081087.2015.1016886
  11. Uç, M., Özdemir, H., Özban, A. Y., 10.1080/03081087.2014.922967, Linear Multilinear Algebra 63 (2015), 1125-1137. (2015) Zbl1310.15049MR3291960DOI10.1080/03081087.2014.922967
  12. Uç, M., Petik, T., Özdemir, H., 10.1080/03081087.2015.1114985, Linear Multilinear Algebra 64 (2016), 1696-1715. (2016) Zbl1346.15017MR3509494DOI10.1080/03081087.2015.1114985
  13. Živković-Zlatanović, S. Č., Djordjević, D. S., Harte, R., 10.1016/j.jmaa.2011.12.030, J. Math. Anal. Appl. 389 (2012), 871-886. (2012) Zbl1253.47029MR2879265DOI10.1016/j.jmaa.2011.12.030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.