Weak polynomial identities and their applications

Vesselin Drensky

Communications in Mathematics (2021)

  • Volume: 29, Issue: 2, page 291-324
  • ISSN: 1804-1388

Abstract

top
Let be an associative algebra over a field generated by a vector subspace . The polynomial of the free associative algebra is a weak polynomial identity for the pair if it vanishes in when evaluated on . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of degree three.

How to cite

top

Drensky, Vesselin. "Weak polynomial identities and their applications." Communications in Mathematics 29.2 (2021): 291-324. <http://eudml.org/doc/298233>.

@article{Drensky2021,
abstract = {Let $R$ be an associative algebra over a field $K$ generated by a vector subspace $V$. The polynomial $f(x_1,\ldots ,x_n)$ of the free associative algebra $K\langle x_1,x_2,\ldots \rangle $ is a weak polynomial identity for the pair $(R,V)$ if it vanishes in $R$ when evaluated on $V$. We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of degree three.},
author = {Drensky, Vesselin},
journal = {Communications in Mathematics},
keywords = {weak polynomial identities; L-varieties; algebras with polynomial identities; central polynomials; finite basis property; Specht problem},
language = {eng},
number = {2},
pages = {291-324},
publisher = {University of Ostrava},
title = {Weak polynomial identities and their applications},
url = {http://eudml.org/doc/298233},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Drensky, Vesselin
TI - Weak polynomial identities and their applications
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 291
EP - 324
AB - Let $R$ be an associative algebra over a field $K$ generated by a vector subspace $V$. The polynomial $f(x_1,\ldots ,x_n)$ of the free associative algebra $K\langle x_1,x_2,\ldots \rangle $ is a weak polynomial identity for the pair $(R,V)$ if it vanishes in $R$ when evaluated on $V$. We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of degree three.
LA - eng
KW - weak polynomial identities; L-varieties; algebras with polynomial identities; central polynomials; finite basis property; Specht problem
UR - http://eudml.org/doc/298233
ER -

References

top
  1. Amitsur, S.A., 10.1112/jlms/s1-30.4.464, J. London Math. Soc., 30, 1955, 464-470, (1955) DOI10.1112/jlms/s1-30.4.464
  2. Amitsur, S.A., 10.1112/jlms/s1-30.4.470, J. London Math. Soc., 30, 1955, 470-475, (1955) DOI10.1112/jlms/s1-30.4.470
  3. Amitsur, S.A., Levitzki, J., 10.1090/S0002-9939-1950-0036751-9, Proc. Amer. Math. Soc., 1, 1950, 449-463, (1950) DOI10.1090/S0002-9939-1950-0036751-9
  4. Ananin, A.Z., Kemer, A.R., Varieties of associative algebras whose lattices of subvarieties are distributive (Russian), Sibirs. Mat. Zh., 17, 1976, 723-730, Translation: Sib. Math. J. 17 (1976) 549--554. (1976) 
  5. Azevedo, S.S., Fidelis, M., Koshlukov, P., 10.1016/j.jalgebra.2004.01.004, J. Algebra, 276, 2, 2004, 836-845, (2004) DOI10.1016/j.jalgebra.2004.01.004
  6. Bahturin, Yu.A., Identical Relations in Lie Algebras (Russian), 1985, ``Nauka'', Moscow, Translation: VNU Science Press, Utrecht (1987). (1985) 
  7. Bakhturin, Yu.A., Ol'shanskiĭ, A. Yu., Identical relations in finite Lie rings (Russian), Mat. Sb., N. Ser., 96, 138, 1975, 543-559, Translation: Math. USSR, Sb. 25 (1975) 507--523. (1975) 
  8. Belov, A.Ya., On non-Spechtian varieties (Russian. English summary), Fundam. Prikl. Mat., 5, 1, 1999, 47-66, (1999) 
  9. Belov, A.Ya., Counterexamples to the Specht problem (Russian), Mat. Sb., 191, 3, 2000, 13-24, Translation: Sb. Math. 191 (3) (2000) 329--340. (2000) 
  10. Belov, A.Ya., The local finite basis property and local representability of varieties of associative rings (Russian), Izv. Ross. Akad. Nauk, Ser. Mat., 74, 1, 2010, 3-134, Translation: Izv. Math. 74 (1) (2010) 1--126. (2010) 
  11. Belov-Kanel, A., Rowen, L., Vishne, U., Full exposition of Specht's problem, Serdica Math. J., 38, 1-3, 2012, 313-370, (2012) 
  12. Benanti, F., Demmel, J., Drensky, V., Koev, P., Computational approach to polynomial identities of matrices -- a survey, Polynomial Identities and Combinatorial Methods, Pantelleria, Italy, 235, 2003, 141-178, New York, Marcel Dekker, (2003) 
  13. Bui, T.T., On the basis of the identities of the matrix algebra of second order over a field of characteristic zero, Serdica, 7, 1981, 187-194, (1981) 
  14. Cohen, D.E., 10.1016/0021-8693(67)90039-7, J. Algebra, 5, 1967, 267-273, (1967) DOI10.1016/0021-8693(67)90039-7
  15. Colombo, J., Koshlukov, P., 10.1016/j.laa.2003.07.011, Linear Algebra Appl., 377, 2004, 53-67, (2004) DOI10.1016/j.laa.2003.07.011
  16. Macedo, D.L. da Silva, Identidades Polinomiais em Representações de Álgebras de Lie e Crescimento das Codimensões, 2019, Ph.D. Thesis, State University of Campinas. (2019) 
  17. Macedo, D.L. da Silva, Koshlukov, P., 10.1017/S0013091520000243, Proc. Edinburgh Math. Soc., 63, 4, 2020, 929-949, (2020) DOI10.1017/S0013091520000243
  18. Vincenzo, O.M. Di, Scala, R. La, Weak polynomial identities for , Serdica Math. J., 27, 3, 2001, 233-248, (2001) 
  19. Vincenzo, O.M. Di, Scala, R. La, 10.1142/S1005386705000325, Algebra Colloq., 12, 2, 2005, 333-349, (2005) DOI10.1142/S1005386705000325
  20. Filippov, V.T., Kharchenko, V.K., (Eds.), I.P. Shestakov, The Dniester Notebook. Unsolved Problems in the Theory of Rings and Modules (Russian). 4th ed, Mathematics Institute, Siberian Branch of the Russian Academy of Sciences, Novosibirsk., 1993, Mathematics Institute, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. Translation: https://math.usask.ca/ ̃bremner/research/publications/dniester.pdf. (1993) 
  21. Domokos, M., New identities for matrices, Lin. Multilin. Algebra, 38, 1995, 207-213, (1995) 
  22. Domokos, M., Drensky, V., 10.1016/j.aim.2020.107343, Adv. Math., 374, 2020, 107343, (2020) DOI10.1016/j.aim.2020.107343
  23. Dorofeev, G.V., Properties of the join of varieties of algebras (Russian), Algebra i Logika, 16, 1977, 24-39, Translation: Algebra and Logic 16 (1977) 17--27. (1977) 
  24. Drensky, V., Identities in Lie algebras (Russian), Algebra i Logika, 13, 1974, 265-290, Translation: Algebra and Logic 13 (1974) 150--165. (1974) 
  25. Drensky, V., Solvable Varieties of Lie Algebras (Russian), 1979, Ph.D. thesis, Dept. of Mechanics and Math., Moscow State Univ., Moscow. (1979) 
  26. Drensky, V., Identities in matrix Lie algebras (Russian), Tr. Semin. Im. I.G. Petrovskogo, 6, 1981, 47-55, Translation: J. Sov. Math. 33 (1986) 987--994. (1981) 
  27. Drensky, V., Representations of the symmetric group and varieties of linear algebras (Russian), Mat. Sb., 115, 1981, 98-115, Translation: Math. USSR Sb. 43 (1981) 85--101. (1981) 
  28. Drensky, V., 10.1007/BF01669018, Algebra i Logika, 20, 1981, 282-290, Translation: Algebra and Logic, 20 (1981) 188--194. (1981) DOI10.1007/BF01669018
  29. Drensky, V.S., Weak identities in the algebra of symmetric matrices of order two (Russian), Pliska, Stud. Math. Bulg., 8, 1986, 77-84, Translation: arXiv:2008.13286v1 [math.RA]. (1986) 
  30. Drensky, V., 10.1016/0021-8693(87)90122-0, J. Algebra, 108, 1987, 66-87, (1987) DOI10.1016/0021-8693(87)90122-0
  31. Drensky, V., 10.1007/BF02762079, Israel J. Math., 92, 1995, 235-248, (1995) DOI10.1007/BF02762079
  32. Drensky, V., Free Algebras and PI-Algebras, 2000, Springer-Verlag, Singapore, (2000) 
  33. Drensky, V., Weak polynomial identities of degree three, (in preparation). 
  34. Drensky, V., Formanek, E., Polynomial Identity Rings, Advanced Courses in Mathematics, CRM Barcelona, 2004, Birkhäuser Verlag, Basel, (2004) 
  35. Drensky, V., Kasparian, A., Some polynomial identities of matrix algebras, C.R. Acad. Bulg. Sci., 36, 1983, 565-568, (1983) 
  36. Drensky, V., Kasparian, A., Polynomial identities of eighth degree for matrices, Annuaire Univ. Sofia Fac. Math. Méc., 77, 1, 1983, 175-195, (1983) 
  37. Drensky, V., Kasparian, A., 10.1080/00927878508823188, Commun. in Algebra, 13, 1985, 745-752, (1985) DOI10.1080/00927878508823188
  38. Drensky, V.S., Koshlukov, P.E., Weak polynomial identities for a vector space with a symmetric bilinear form, Mathematics and Education in Mathematics, Proc. 16th Spring Conf., Sunny Beach/Bulg, 1987, 213-219, Publishing House of the Bulgarian Academy of Sciences, Sofia, arXiv:1905.08351v1 [math.RA]. (1987) 
  39. Drensky, V., Koshlukov, P., Polynomial identities for Jordan algebras of degree two, J. Indian Math. Soc., New Ser., 55, 1-4, 1990, 1-30, (1990) 
  40. Drensky, V., Cattaneo, G.M. Piacentini, 10.1006/jabr.1994.1240, J. Algebra, 168, 1994, 469-478, (1994) DOI10.1006/jabr.1994.1240
  41. Drensky, V., Rashkova, Ts.G., 10.1080/00927879308824765, Commun. in Algebra, 21, 10, 1993, 3779-3795, (1993) DOI10.1080/00927879308824765
  42. Drensky, V., Vladimirova, L.A., Varieties of pairs of algebras with a distributive lattice of subvarieties, Serdica, 12, 1986, 166-170, (1986) 
  43. Drensky, V., Zaicev, M., Central polynomials for algebras of multiplications of simple algebras, (in preparation). 
  44. Dubnov, J., Sur une généralisation de l'équation de Hamilton-Cayley et sur les invariants simultanés de plusieurs affineurs (Russian), Proc. Seminar on Vector and Tensor Analysis, 2--3, 1935, 351-367, Mechanics Research Inst., Moscow State Univ, (Zbl. für Math. 12 (1935), p. 176.). (1935) 
  45. Dubnov, J., Ivanov, V., Sur l'abaissement du degré des polynômes en affineurs, C.R. (Doklady) Acad. Sci. USSR, 41, 1943, 96-98, (See also MR 6 (1945) p. 113, Zbl. für Math. 60 (1957) p. 33.). (1943) 
  46. Filippov, V.T., On the variety of Mal'tsev algebras (Russian), Algebra i Logika, 20, 1981, 300-314, Translation: Algebra and Logic 20 (1981) 200--210. (1981) 
  47. Formanek, E., 10.1016/0021-8693(72)90050-6, J. Algebra, 232, 1972, 129-132, (1972) DOI10.1016/0021-8693(72)90050-6
  48. Formanek, E., 10.1016/0021-8693(84)90240-0, J. Algebra, 89, 1984, 178-223, (1984) DOI10.1016/0021-8693(84)90240-0
  49. Formanek, E., 10.1016/0021-8693(87)90166-9, J. Algebra, 109, 1987, 93-114, (1987) DOI10.1016/0021-8693(87)90166-9
  50. Formanek, E., 10.1007/BF00053297, Acta Appl. Math., 21, 1--2, 1990, 185-192, (1990) DOI10.1007/BF00053297
  51. Formanek, E., The polynomial Identities and Invariants of Matrices, CBMS Regional Conf. Series in Math., 78, 1991, American Mathematical Society, Providence RI, (1991) 
  52. Genov, G.K., 10.1007/BF01669108, Algebra i Logika, 20, 1981, 365-388, Translation: Algebra and Logic, 20 (1981) 241-257. (1981) DOI10.1007/BF01669108
  53. Genov, G.K., Siderov, P.N., A basis of the identities of the fourth order matrix algebra over a finite field I (Russian), Serdica, 8, 1982, 313-323, (1982) 
  54. Genov, G.K., Siderov, P.N., A basis of the identities of the fourth order matrix algebra over a finite field II (Russian), Serdica, 8, 1982, 351-366, (1982) 
  55. Giambruno, A., Valenti, A., 10.1007/BF02785544, Israel J. Math., 96, 1996, 281-297, (1996) DOI10.1007/BF02785544
  56. Giambruno, A., Zaicev, M., 10.1090/surv/122/01, Mathematical Surveys and Monographs, 122, 2005, American Mathematical Society, Providence, RI, (2005) DOI10.1090/surv/122/01
  57. Grishin, A.V., Examples of T-spaces and T-ideals over a field of characteristic 2 without the finite basis property (Russian. English summary), Fundam. Prikl. Mat., 5, 1, 1999, 101-118, (1999) 
  58. Grishin, A.V., 10.1090/S1079-6762-00-00080-9, Electron. Res. Announc. Amer. Math. Soc., 6, 7, 2000, 50-51, (2000) DOI10.1090/S1079-6762-00-00080-9
  59. Gupta, C.K., Krasilnikov, A.N., 10.1081/AGB-120014672, Commun. in Algebra, 30, 10, 2002, 4851-4866, (2002) DOI10.1081/AGB-120014672
  60. Hall, M., 10.1090/S0002-9947-1943-0008892-4, Trans. Amer. Math. Soc., 54, 1943, 229-277, (1943) DOI10.1090/S0002-9947-1943-0008892-4
  61. Halpin, P., 10.1080/00927878308822961, Commun. in Algebra, 11, 1983, 2237-2248, (1983) DOI10.1080/00927878308822961
  62. Herstein, I.N., Noncommutative Rings, 1968, Mathematical Association of America. Distributed by John Wiley and Sons, (1968) 
  63. Higman, G., 10.1112/plms/s3-2.1.326, Proc. Lond. Math. Soc., III. Ser., 2, 1952, 326-336, (1952) DOI10.1112/plms/s3-2.1.326
  64. Higman, G., 10.1017/S0305004100030899, Proc. Camb. Phil. Soc., 52, 1956, 1-4, (1956) DOI10.1017/S0305004100030899
  65. Il'tyakov, A.V., The Specht property of the ideals of identities of certain simple nonassociative algebras (Russian), Algebra i Logika, 24, 3, 1985, 327-351, Translation: Algebra and Logic 24 (185) 210--228. (1985) 
  66. Il'tyakov, A.V., On finite basis of identities of Lie algebra representations, Nova J. Algebra Geom., 1, 3, 1992, 207-259, (1992) 
  67. Il'tyakov, A.V., Polynomial identities of finite dimensional Lie algebras, 1998, University of Sydney. Department of Mathematics and Statistics, https://www.maths.usyd.edu.au/u/ResearchReports/Algebra/Ilt/1998-6.html. (1998) 
  68. Isaev, I.M., Identities of Finite Algebras (Russian), 1985, Ph.D. thesis, Dept. of Mechanics and Math., Novosibirsk State Univ. (1985) 
  69. Isaev, I.M., Identities of the algebra of a bilinear form over a finite field (Russian), Some Problems and Questions of Analysis and Algebra, 1985, 61-75, Interuniv. Collect. Sci. Works, Novosibirsk, (1985) 
  70. Isaev, I.M., 10.1007/BF01978883, Algebra and Logika, 25, 2, 1986, 136-153, Translation: Algebra and Logic 25 (1986) 86--96. (1986) DOI10.1007/BF01978883
  71. Isaev, I.M., 10.33048/semi.2018.15.124, Sib. Èlektron. Mat. Izv., 15, 2018, 1498-1505, (2018) DOI10.33048/semi.2018.15.124
  72. Isaev, I.M., Kislitsin, A.V., Identities in vector spaces and examples of finite-dimensional linear algebras having no finite basis of identities (Russian), Algebra i Logika, 52, 4, 2013, 435-460, Translation: Algebra and Logic 52 (4) (2013) 290--307. (2013) 
  73. Isaev, I.M., Kislitsin, A.V., On identities of vector spaces embedded in finite associative algebras (Russian), Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15, 3, 2015, 69-77, Novosibirsk State University, Translation: J. Math. Sci. 221 (2017) 849--856. (2015) 
  74. Jacobson, N., 10.1007/BFb0070023, 1975, Springer, Lecture Notes in Mathematics, 441. (1975) DOI10.1007/BFb0070023
  75. James, G.D., 10.1007/BF02760404, Isr. J. Math., 29, 1, 1978, 105-112, Springer, (1978) DOI10.1007/BF02760404
  76. Kanel-Belov, A., Karasik, Ya., Rowen, L.H., Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, Monographs and Research Notes in Mathematics, 16, 2016, CRC Press, Boca Raton, FL, (2016) 
  77. Kaplansky, I., Problems in the theory of rings, Report of a Conference on Linear Algebras, June, 1956, 502, 1957, 1-3, National Acad. of Sci.--National Research Council, Washington, Publ., (1957) 
  78. Kaplansky, I., Problems in the theory of rings revised, Amer. Math. Monthly, 77, 5, 1970, 445-454, Taylor &Francis, (1970) 
  79. Kemer, A.R., Nonmatrix varieties (Russian), Algebra i Logika, 19, 3, 1980, 255-283, Springer, Translation: Algebra and Logic 19 (1980) 157--178. (1980) 
  80. Kemer, A.R., Varieties and -graded algebras (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 48, 5, 1984, 1042-1059, IOP Publishing, Translation: {Math. USSR, Izv.} 25 (2) (1985) 359--374. (1984) 
  81. Kemer, A.R., 10.1007/BF01978692, Algebra i Logika, 26, 5, 1987, 362-397, Springer, Algebra and Logic 26 (5) (1987) 362--397. (1987) DOI10.1007/BF01978692
  82. Kemer, A.R., Identities of finitely generated algebras over an infinite field, Izv. Akad. Nauk SSSR, Ser. Mat., 54, 4, 1990, 726-753, IOP Publishing, Translation: Math. USSR, Izv. 37 (1) (1991) 69--96. (1990) 
  83. Kemer, A.R., Ideals of Identities of Associative Algebras, 1991, American Mathematical Society, Providence, (1991) 
  84. Kharchenko, V.K., A remark on central polynomials (Russian), Mat. Zametki, 26, 3, 1979, 345-346, Translation: {Math. Notes} 26 (3) (1979) p. 665. (1979) 
  85. Kislitsin, A.V., On identities of spaces of linear transformations over infinite field (Russian), Izvestiya Altai State Univ., 65, 1-2, 2010, 37-41, (2010) 
  86. Kislitsin, A.V., 10.33048/alglog.2018.57.504, Algebra i Logika, 57, 5, 2018, 556-566, Translation: {Algebra and Logic} 57 (5) (2018) 360--367. (2018) DOI10.33048/alglog.2018.57.504
  87. Klein, A.A., -algebras satisfying identities of degree 3, Trans. Amer. Math. Soc., 201, 1975, 263-277, (1975) 
  88. Koshlukov, P., 10.1080/00927878808823634, Commun. in Algebra, 16, 7, 1988, 1325-1371, Taylor & Francis, (1988) DOI10.1080/00927878808823634
  89. Koshlukov, P., 10.1006/jabr.2000.8738, J. Algebra, 241, 1, 2001, 410-434, Elsevier, (2001) DOI10.1006/jabr.2000.8738
  90. Krakowski, D., Regev, A., The polynomial identities of the Grassman algebra, Trans. Amer. Math. Soc., 1973, 429-438, JSTOR, (1973) 
  91. Kruse, R.L., 10.1016/0021-8693(73)90025-2, J. Algebra, 26, 2, 1973, 298-318, Elsevier, (1973) DOI10.1016/0021-8693(73)90025-2
  92. Kuz'min, E.N., On the Nagata-Higman theorem (Russian), Proc. dedicated to the 60th birthday of Acad. Iliev, 1975, 101-107, Sofia, (1975) 
  93. Kuz'min, Yu.V., Free center-by-metabelian groups, Lie algebras, and -groups, Izv. Akad. Nauk SSSR, Ser. Mat., 41, 1, 1977, 3-33, Translation: {Math. USSR, Izv.} 11 (1977), 1--30. (1977) 
  94. Latyshev, V.N., Shmelkin, A.L., A certain problem of Kaplansky (Russian), Algebra i logika, 8, 4, 1969, 447-448, Translation: {Algebra and Logic} 8 (1969) p. 257. (1969) 
  95. Leron, U., 10.1090/S0002-9947-1973-0332873-3, Trans. Amer. Math. Soc., 183, 1973, 175-202, (1973) DOI10.1090/S0002-9947-1973-0332873-3
  96. Levitzki, J., 10.1090/S0002-9904-1946-08705-4, Bull. Amer. Math. Soc., 52, 12, 1946, 1033-1035, American Mathematical Society, (1946) DOI10.1090/S0002-9904-1946-08705-4
  97. Lopatin, A., Identities for the Lie algebra over an infinite field of characteristic two, arXiv preprint arXiv:1612.07748, arXiv: 1612.07748v1 [math.RA]. 
  98. L'vov, I.V., On varieties of associative rings. I (Russian), Algebra i Logika, 12, 3, 1973, 269-297, Springer, Translation: {Algebra and Logic} 12 (1973) 150--167. (1973) 
  99. L'vov, I.V., Finite-dimensional algebras with infinite bases of identities (Russian), Sib. Mat. Zh., 19, 1, 1978, 91-99, Springer, Translation: {Sib. Math. J.} 19 (1) (1978) 63--69. (1978) 
  100. L'vov, I.V., Varieties generated by finite alternative rings (Russian), Algebra i Logika, 17, 3, 1978, 282-286, Springer, Translation: {Algebra and Logic} 17 (3) (1978) 195--198. (1978) 
  101. Malcev, A.I., On algebras defined by identities (Russian), Mat. Sb., 26, 1950, 19-33, (1950) 
  102. Mal'tsev, Yu.N., Kuz'min, E.N., A basis for the identities of the algebra of second-order matrices over a finite field (Russian), Algebra i Logika, 17, 1, 1978, 28-32, Springer, Translation: {Algebra and Logic} 17 (1978) 18--21. (1978) 
  103. Mal'tsev, Yu.N., Parfenov, V.A., A nonassociative algebra having no finite basis for its laws (Russian), Sib. Mat. Zh., 18, 6, 1977, 1420-1421, Springer, Translation: {Sib. Math. J.} 18 (1977) 1007--1008. (1977) 
  104. Medvedev, Yu.A., Identities of finite Jordan -algebras (Russian), Algebra i Logika, 18, 6, 1979, 723-748, Springer, Translation: {Algebra and Logic} 18 (6) (1979) 460--478. (1979) 
  105. Nagata, M., On the nilpotency of nil-algebras, J. Math. Soc. Japan, 4, 3-4, 1952, 296-301, The Mathematical Society of Japan, (1952) 
  106. Neumann, B.H., 10.1007/BF01594191, Math. Ann., 114, 1, 1937, 506-525, Springer, (1937) DOI10.1007/BF01594191
  107. Oates, S., Powell, M.B., 10.1016/0021-8693(64)90004-3, J. Algebra, 1, 1, 1964, 11-39, Academic Press, (1964) DOI10.1016/0021-8693(64)90004-3
  108. Oates-MacDonald, S., Vaughan-Lee, M.R., 10.1017/S1446788700011897, J. Aust. Math. Soc., Ser. A, 26, 3, 1978, 368-382, Cambridge University Press, (1978) DOI10.1017/S1446788700011897
  109. Okhitin, S.V., On varieties defined by two-variable identities (Russain), Ref. Zh. Mat., 6A366DEP, 1986, Moskov. Gos. Univ. Moscow, (1986) 
  110. Olsson, J.B., Regev, A., 10.1016/0021-8693(76)90247-7, J. Algebra, 38, 1, 1976, 100-111, Academic Press, (1976) Zbl0323.16002DOI10.1016/0021-8693(76)90247-7
  111. Olsson, J.B., Regev, A., 10.1007/BF03007661, Isr. J. Math., 26, 2, 1977, 97-104, Springer, (1977) DOI10.1007/BF03007661
  112. Plotkin, B.I., Varieties of group representations (Russian), Usp. Mat. Nauk, 32, 5, 1977, 3-68, IOP Publishing, Translation: {Russ. Math. Surv.} 32 (5) (1977) 1--72. (1977) 
  113. Plotkin, P.I., Vovsi, S.V., Varieties of Group Representations. General Theory, Relations and Applications (Russian), 1983, Zinatne, Riga, (1983) 
  114. Polikarpov, S.V., Shestakov, I.P., Nonassociative affine algebras (Russian), Algebra i Logika, 29, 6, 1990, 709-723, Springer, Translation: {Algebra and Logic} 29 (6) (1990) 458--466. (1990) 
  115. Polin, S.V., Identities of finite algebras (Russian), Sibirsk. Mat. Zh., 17, 6, 1976, 1356-1366, Springer, Translation: {Sib. Math. J.} 17 (6) (1976) 992--999. (1976) 
  116. Popov, A., Varieties of associative algebras with unity whose lattice of subvarieties is distributive. I (Russian), Annuaire Univ. Sofia Fac. Math. M{é}c, 79, 1, 1985, 223-244, (1985) 
  117. Popov, A., Identities of the tensor square of a Grassmann algebra (Russian), Algebra i Logika, 21, 4, 1982, 442-471 , Translation: {Algebra and Logic} 21 (1982) 296--316. (1982) 
  118. Popov, A., Chekova, P., Varieties of associative algebras with identity whose lattice of subvarieties is distributive (Russian), Annuaire Univ. Sofia Fac. Math. Méc., 77, 1, 1983, 205-222, (1983) 
  119. Popov, A., Chekova, P., Some distributive lattices of unitary varieties of associative algebras (Russian), Annuaire Univ. Sofia Fac. Math. Inform., 81, 1, 1987, 243-260, (1987) 
  120. Popov, A., Nikolaev, R., Varieties of associative algebras with unity whose lattice of subvarieties is distributive. II (Russian), Annuaire Univ. Sofia Fac. Math. Méc., 80, 1, 1986, 15-23, (1986) 
  121. Procesi, C., Rings with Polynomial Identities, 17, 1973, Marcel Dekker, (1973) 
  122. Razmyslov, Yu.P., Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero (Russian), Algebra i Logika, 12, 1, 1973, 83-113, Springer, Translation: {Algebra and Logic} 12 (1) (1973) 47--63. (1973) 
  123. Razmyslov, Yu.P., On a problem of Kaplansky (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 37, 3, 1973, 483-501, IOP Publishing, Translation: {Math. USSR, Izv.} 7 (3) (1973) 479--496. (1973) 
  124. Razmyslov, Yu.P., Trace identities of full matrix algebras over a field of characteristic zero (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 38, 4, 1974, 723-756, IOP Publishing, Translation: {Math. USSR, Izv.} 8 (4) (1974) 727--760. (1974) 
  125. Razmyslov, Yu.P., Finite basis property for identities of representations of a simple three-dimensional Lie algebra over a field of characteristic zero (Russian), Algebra, Work Collect., dedic. O. Yu. Shmidt, 1982, 139-150, Moskva, Translation: Transl. Amer. Math. Soc. Ser. 2 140 (1988), 101--109. (1982) 
  126. Razmyslov, Yu.P., Identities of Algebras and Their Representations (Russian), Sovremennaya Algebra', 1989, Nauka, Moscow, Translation: {Translations of Math. Monographs} 138, AMS, Providence, R.I. (1994). (1989) 
  127. Regev, A., 10.1007/BF03007662, Isr. J. Math., 26, 2, 1977, 105-125, Springer, (1977) DOI10.1007/BF03007662
  128. A.Regev, 10.1112/blms/10.3.261, Bull. Lond. Math. Soc., 10, 3, 1978, 261-266, Oxford University Press, (1978) DOI10.1112/blms/10.3.261
  129. Regev, A., 10.1007/BF02760555, Isr. J. Math., 33, 2, 1979, 149-154, Springer, (1979) DOI10.1007/BF02760555
  130. Regev, A., The polynomial identities of matrices in characteristic zero, Commun. in Algebra, 8, 15, 1980, 1417-1467, Taylor & Francis, (1980) 
  131. Rowen, L.H., Polynomial Identities in Ring Theory, 1980, Academic Press, (1980) Zbl0461.16001
  132. Semenov, K.N., A basis of identities of the Lie algebra sl(2) over a finite field (Russian), Mat. Zametki, 52, 2, 1992, 114-119, Russian Academy of Sciences, Translation: Math. Notes 52 (2) (1992) 835--839. (1992) 
  133. Specht, W., Gesetze in Ringen. I, Math. Z., 52, 1, 1950, 557-589, Springer, (1950) 
  134. Vajs, A.Ya., Zel'manov, E.I., Kemer's theorem for finitely generated Jordan algebras (Russian), Izv. Vyssh. Uchebn. Zaved., Mat., 6, 1989, 42-51, Kazan (Volga region) Federal University, Translation: Sov. Math. (Izvestiya VUZ. Matematika) 33 (6) (1990) 38--47. (1989) 
  135. Vasilovskij, S.Yu., Basis of identities of a three-dimensional simple Lie algebra over an infinite field (Russian), Algebra i Logika, 28, 5, 1989, 534-554, Springer, Translation: {Algebra and Logic} 28 (5) (1989) 355--368. (1989) 
  136. Vasilovskij, S.Yu., Basis of identities of a Jordan algebra of a bilinear form over an infinite field (Russian), Tr. Inst. Mat. (Novosibirsk), 16, 1989, 5-37, Sobolev Institute of Mathematics of the Siberian Branch of the Russian, Translation: {Siberian Adv. Math.} 1 (1991) 142--185. (1989) 
  137. Vaughan-Lee, M.R., 10.1093/qmath/21.3.297, Q. J. Math., Oxf. II. Ser., 21, 3, 1970, 297-308, Oxford University Press, (1970) DOI10.1093/qmath/21.3.297
  138. Vaughan-Lee, M.R., 10.1112/jlms/s2-11.3.263, J. Lond. Math. Soc., II. Ser., 11, 3, 1975, 263-266, Wiley Online Library, (1975) DOI10.1112/jlms/s2-11.3.263
  139. Vladimirova, L.A., Drensky, V.S., Varieties of associative algebras with identity of degree three (Russian), Pliska, Stud. Math. Bulgar., 8, 1986, 144-157, (1986) 
  140. Volichenko, I.B., Varieties of Lie algebras with the identity over a field of characteristic zero (Russian), Sibirsk. Mat. Zh., 25, 3, 1984, 40-54, Springer, Translation: {Sib. Math. J.} 25 (1984) 370--382. (1984) 
  141. Vovsi, S.M., Triangular Products of Group Representations and Their Applications, Progress in Math., 17, 1981, Birkhäuser, Boston, Mass., (1981) 
  142. Wagner, W., 10.1007/BF01571649, Math. Ann., 113, 1936, 528-567, (1936) DOI10.1007/BF01571649
  143. Zhevlakov, K.A., Slinko, A.M., Shestakov, I.P., Shirshov, A.I., Rings That Are Nearly Associative (Russian), 1978, Nauka, Moscow, Translation: Academic Press, New York (1982). (1978) 

NotesEmbed ?

top

You must be logged in to post comments.