A generalisation of Amitsur's A-polynomials

Adam Owen; Susanne Pumplün

Communications in Mathematics (2021)

  • Volume: 29, Issue: 2, page 281-289
  • ISSN: 1804-1388

Abstract

top
We find examples of polynomials f D [ t ; σ , δ ] whose eigenring ( f ) is a central simple algebra over the field F = C Fix ( σ ) Const ( δ ) .

How to cite

top

Owen, Adam, and Pumplün, Susanne. "A generalisation of Amitsur's A-polynomials." Communications in Mathematics 29.2 (2021): 281-289. <http://eudml.org/doc/298235>.

@article{Owen2021,
abstract = {We find examples of polynomials $f\in D[t;\sigma ,\delta ]$ whose eigenring $\mathcal \{E\}(f)$ is a central simple algebra over the field $F = C \cap \mathrm \{Fix\}(\sigma ) \cap \mathrm \{Const\}(\delta )$.},
author = {Owen, Adam, Pumplün, Susanne},
journal = {Communications in Mathematics},
keywords = {Skew polynomial ring; reducible skew polynomials; eigenspace; nonassociative algebra; semisimple Artinian ring},
language = {eng},
number = {2},
pages = {281-289},
publisher = {University of Ostrava},
title = {A generalisation of Amitsur's A-polynomials},
url = {http://eudml.org/doc/298235},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Owen, Adam
AU - Pumplün, Susanne
TI - A generalisation of Amitsur's A-polynomials
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 281
EP - 289
AB - We find examples of polynomials $f\in D[t;\sigma ,\delta ]$ whose eigenring $\mathcal {E}(f)$ is a central simple algebra over the field $F = C \cap \mathrm {Fix}(\sigma ) \cap \mathrm {Const}(\delta )$.
LA - eng
KW - Skew polynomial ring; reducible skew polynomials; eigenspace; nonassociative algebra; semisimple Artinian ring
UR - http://eudml.org/doc/298235
ER -

References

top
  1. Albert, A.A., 10.1090/S0002-9947-1952-0047027-4, Transactions of the American Mathematical Society, 72, 2, 1952, 296-309, JSTOR, (1952) DOI10.1090/S0002-9947-1952-0047027-4
  2. Amitsur, A.S., 10.2307/1969691, Annals of Mathematics, 1954, 245-278, JSTOR, (1954) DOI10.2307/1969691
  3. Amitsur, A.S., 10.1215/S0012-7094-54-02111-0, Duke Mathematical Journal, 21, 1, 1954, 87-105, Duke University Press, (1954) DOI10.1215/S0012-7094-54-02111-0
  4. Amitsur, A.S., 10.2307/2007098, Annals of Mathematics, 62, 2, 1955, 8-43, JSTOR, (1955) DOI10.2307/2007098
  5. Bourbaki, N., Elements of mathematics, 2003, Springer, (2003) 
  6. Brown, C., Pumplün, S., 10.1017/S0017089519000478, Glasgow Mathematical Journal, 63, 1, 2021, 6-26, Cambridge University Press, (2021) DOI10.1017/S0017089519000478
  7. Brown, C., Petit algebras and their automorphisms, 2018, PhD Thesis, University of Nottingham. Online at arXiv:1806.00822. (2018) 
  8. Carcanague, J., Quelques résultats sur les anneaux de Ore, CR Acad. Sci. Paris Sr. AB, 269, 1969, A749-A752, (1969) 
  9. Cohn, P.M., 10.1090/S0002-9947-1963-0155851-X, Transactions of the American Mathematical Society, 109, 2, 1963, 313-331, (1963) DOI10.1090/S0002-9947-1963-0155851-X
  10. Gòmez-Torrecillas, J., Lobillo, F. J., Navarro, G., 10.1016/j.jsc.2018.04.018, Journal of Symbolic Computation, 92, 2019, 269-297, Elsevier, (2019) DOI10.1016/j.jsc.2018.04.018
  11. Gòmez-Torrecillas, J., Basic module theory over non-commutative rings with computational aspects of operator algebras. With an appendix by V. Levandovskyy., Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, 8372, 2014, 23-82, Springer, (2014) 
  12. Goodearl, K. R., Bruce, J. W., Warfield, R. B., An introduction to noncommutative Noetherian rings, 61, 2004, Cambridge University Press, (2004) 
  13. Jacobson, N., Finite-dimensional division algebras over fields, 1996, Springer, (1996) 
  14. Jacobson, N., The theory of rings, 2, 1943, American Mathematical Society, (1943) 
  15. McConnell, J.C., Robson, C.J., Small, L.W., Noncommutative noetherian rings, 30, 2001, American Mathematical Soc., (2001) 
  16. Ore, O., 10.2307/1968173, Annals of Mathematics, 1933, 480-508, JSTOR, (1933) Zbl0007.15101DOI10.2307/1968173
  17. Owen, A., On the right nucleus of Petit algebras, PhD Thesis, University of Nottingham, in preparation.. 
  18. Pumplün, S., 10.1016/j.jpaa.2017.10.019, Journal of Pure and Applied Algebra, 222, 9, 2018, 2773-2783, Elsevier, (2018) DOI10.1016/j.jpaa.2017.10.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.