Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities
Lulu Yin; Hongwei Liu; Jun Yang
Applications of Mathematics (2022)
- Volume: 67, Issue: 3, page 273-296
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYin, Lulu, Liu, Hongwei, and Yang, Jun. "Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities." Applications of Mathematics 67.3 (2022): 273-296. <http://eudml.org/doc/298238>.
@article{Yin2022,
abstract = {We propose a modification of the golden ratio algorithm for solving pseudomonotone equilibrium problems with a Lipschitz-type condition in Hilbert spaces. A new non-monotone stepsize rule is used in the method. Without such an additional condition, the theorem of weak convergence is proved. Furthermore, with strongly pseudomonotone condition, the $R$-linear convergence rate of the method is established. The results obtained are applied to a variational inequality problem, and the convergence rate of the problem under the condition of error bound is considered. Finally, numerical experiments on several specific problems and comparison with other algorithms show the superiority of the algorithm.},
author = {Yin, Lulu, Liu, Hongwei, Yang, Jun},
journal = {Applications of Mathematics},
language = {eng},
number = {3},
pages = {273-296},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities},
url = {http://eudml.org/doc/298238},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Yin, Lulu
AU - Liu, Hongwei
AU - Yang, Jun
TI - Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 273
EP - 296
AB - We propose a modification of the golden ratio algorithm for solving pseudomonotone equilibrium problems with a Lipschitz-type condition in Hilbert spaces. A new non-monotone stepsize rule is used in the method. Without such an additional condition, the theorem of weak convergence is proved. Furthermore, with strongly pseudomonotone condition, the $R$-linear convergence rate of the method is established. The results obtained are applied to a variational inequality problem, and the convergence rate of the problem under the condition of error bound is considered. Finally, numerical experiments on several specific problems and comparison with other algorithms show the superiority of the algorithm.
LA - eng
UR - http://eudml.org/doc/298238
ER -
References
top- Bauschke, H. H., Combettes, P. L., 10.1007/978-1-4419-9467-7, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). (2011) Zbl1218.47001MR2798533DOI10.1007/978-1-4419-9467-7
- Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M., 10.1007/978-3-030-00205-3, EURO Advanced Tutorials on Operational Research. Springer, Cham (2019). (2019) Zbl06954058MR3838394DOI10.1007/978-3-030-00205-3
- Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145. (1994) Zbl0888.49007MR1292380
- Daniele, P., Giannessi, F., (eds.), A. Maugeri, 10.1007/978-1-4613-0239-1, Nonconvex Optimization and Its Applications 68. Kluwer, Dordrecht (2003). (2003) Zbl1030.00031MR2042582DOI10.1007/978-1-4613-0239-1
- Facchinei, F., Pang, J.-S., 10.1007/b97543, Springer Series in Operations Research. Springer, New York (2003). (2003) Zbl1062.90001MR1955648DOI10.1007/b97543
- Fan, K., A minimax inequality and applications, Inequalities. III Academic Press, New York (1972), 103-113. (1972) Zbl0302.49019MR0341029
- am, S. D. Fl\accent23, Antipin, A. S., 10.1007/BF02614504, Math. Program. 78 (1997), 29-41. (1997) Zbl0890.90150MR1454787DOI10.1007/BF02614504
- Hieu, D. V., 10.1007/s13398-016-0328-9, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111 (2017), 823-840. (2017) Zbl1378.65136MR3661152DOI10.1007/s13398-016-0328-9
- Hieu, D. V., 10.1007/s11075-017-0350-9, Numer. Algorithms 77 (2018), 983-1001. (2018) Zbl06860399MR3779075DOI10.1007/s11075-017-0350-9
- Hieu, D. V., The convergence rate of a golden ratio algorithm for equilibrium problems, Available at https://arxiv.org/abs/1810.03564 (2018), 11 pages. (2018)
- Hieu, D. V., 10.1007/s11075-018-0532-0, Numer Algorithms 80 (2019), 1413-1436. (2019) Zbl07042055MR3927239DOI10.1007/s11075-018-0532-0
- Hieu, D. V., Cho, Y. J., Xiao, Y.-b., 10.1080/02331934.2018.1505886, Optimization 67 (2018), 2003-2029. (2018) Zbl1416.90050MR3885897DOI10.1080/02331934.2018.1505886
- Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P., 10.1080/02331934.2019.1683554, Optimization 69 (2020), 2279-2304. (2020) Zbl1459.65096MR4156869DOI10.1080/02331934.2019.1683554
- Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P., 10.1007/s10013-020-00447-7, Vietnam J. Math. 49 (2021), 1165-1183. (2021) Zbl7425500MR4319545DOI10.1007/s10013-020-00447-7
- Hieu, D. V., Strodiot, J. J., Muu, L. D., Modified golden ratio algorithms for solving equilibrium problems, Available at https://arxiv.org/abs/1907.04013 (2019), 14 pages. (2019)
- Hieu, D. V., Strodiot, J. J., Muu, L. D., 10.1007/s10957-020-01661-6, J. Optim. Theory Appl. 185 (2020), 476-503. (2020) Zbl07198926MR4096353DOI10.1007/s10957-020-01661-6
- Hieu, D. V., Thong, D. V., 10.1007/s10898-017-0564-3, J. Glob. Optim. 70 (2018), 385-399. (2018) Zbl1384.65041MR3761263DOI10.1007/s10898-017-0564-3
- Kim, D. S., Vuong, P. T., Khanh, P. D., 10.1007/s11590-015-0960-x, Optim. Lett. 10 (2016), 1669-1679. (2016) Zbl1392.90115MR3556951DOI10.1007/s11590-015-0960-x
- Konnov, I. V., 10.1007/978-3-642-56886-2, Lecture Notes in Economics and Mathematical Systems 495. Springer, Berlin (2001). (2001) Zbl0982.49009MR1795730DOI10.1007/978-3-642-56886-2
- Konnov, I. V., 10.1016/s0076-5392(07)x8001-9, Mathematics in Science and Engineering 210. Elsevier, Amsterdam (2007). (2007) Zbl1140.91056MR2503647DOI10.1016/s0076-5392(07)x8001-9
- Korpelevich, G. M., An extragradient method for finding saddle points and other problems, Ehkon. Mat. Metody Russian 12 (1976), 747-756. (1976) Zbl0342.90044MR0451121
- Malitsky, Y., 10.1007/s10107-019-01416-w, Math. Program. 184 (2020), 383-410. (2020) Zbl07263698MR4037890DOI10.1007/s10107-019-01416-w
- Martinet, B., 10.1051/m2an/197004R301541, Rev. Franç. Inform. Rech. Opér. French 4 (1970), 154-158. (1970) Zbl0215.21103MR298899DOI10.1051/m2an/197004R301541
- Muu, L. D., Oettli, W., 10.1016/0362-546X(92)90159-C, Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. (1992) Zbl0773.90092MR1171603DOI10.1016/0362-546X(92)90159-C
- Muu, L. D., Quy, N. V., 10.1007/s10013-014-0115-x, Vietnam J. Math. 43 (2015), 229-238. (2015) Zbl1317.47058MR3349814DOI10.1007/s10013-014-0115-x
- Ortega, J. M., Rheinboldt, W. C., 10.1016/c2013-0-11263-9, Computer Science and Applied Mathematics. Academic Press, New York (1970). (1970) Zbl0241.65046MR0273810DOI10.1016/c2013-0-11263-9
- Rockafellar, R. T., 10.1137/0314056, SIAM J. Control Optim. 14 (1976), 877-898. (1976) Zbl0358.90053MR0410483DOI10.1137/0314056
- Tran, D. Q., Dung, M. L., Nguyen, V. H., 10.1080/02331930601122876, Optimization 57 (2008), 749-776. (2008) Zbl1152.90564MR2473940DOI10.1080/02331930601122876
- Vinh, N. T., Golden ratio algorithms for solving equilibrium problems in Hilbert spaces, Available at https://arxiv.org/abs/1804.01829 (2018), 25 pages. (2018)
- Yang, J., Liu, H., 10.1007/s10589-019-00156-z, Comput. Optim. Appl. 75 (2020), 423-440. (2020) Zbl1432.49013MR4064596DOI10.1007/s10589-019-00156-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.