A half-space type property in the Euclidean sphere
Marco Antonio Lázaro Velásquez
Archivum Mathematicum (2022)
- Volume: 058, Issue: 1, page 49-63
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVelásquez, Marco Antonio Lázaro. "A half-space type property in the Euclidean sphere." Archivum Mathematicum 058.1 (2022): 49-63. <http://eudml.org/doc/298246>.
@article{Velásquez2022,
abstract = {We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_\{r+1\}$ immersed into the Euclidean sphere $\mathbb \{S\}^\{n+1\}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb \{S\}^\{n+1\}$, a region that is determined by a totally umbilical sphere of $\mathbb \{S\}^\{n+1\}$. We also provide a rigidity result for such hypersurfaces.},
author = {Velásquez, Marco Antonio Lázaro},
journal = {Archivum Mathematicum},
keywords = {Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere},
language = {eng},
number = {1},
pages = {49-63},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A half-space type property in the Euclidean sphere},
url = {http://eudml.org/doc/298246},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Velásquez, Marco Antonio Lázaro
TI - A half-space type property in the Euclidean sphere
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 1
SP - 49
EP - 63
AB - We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_{r+1}$ immersed into the Euclidean sphere $\mathbb {S}^{n+1}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb {S}^{n+1}$, a region that is determined by a totally umbilical sphere of $\mathbb {S}^{n+1}$. We also provide a rigidity result for such hypersurfaces.
LA - eng
KW - Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere
UR - http://eudml.org/doc/298246
ER -
References
top- Alencar, H., do Carmo, M., Colares, A.G., 10.1007/BF03025712, Math. Z. 213 (1993), 117–131. (1993) Zbl0792.53057DOI10.1007/BF03025712
- Alías, L.J., Barros, A., Brasil Jr., A., 10.1090/S0002-9939-04-07559-8, Proc. Amer. Math. Soc. 133 (2005), 875–884. (2005) MR2113939DOI10.1090/S0002-9939-04-07559-8
- Alías, L.J., Brasil Jr., A., Perdomo, O., 10.1090/S0002-9939-07-08886-7, Proc. Amer. Math. Soc. 135 (2007), 3685–3693. (2007) MR2336585DOI10.1090/S0002-9939-07-08886-7
- Alías, L.J., Brasil Jr., A., Sousa Jr., L., 10.1007/s00574-004-0009-8, Bull. Braz. Math. Soc. 35 (2004), 165–175. (2004) MR2081021DOI10.1007/s00574-004-0009-8
- Aquino, C.P., de Lima, H., 10.1016/j.difgeo.2011.04.039, Differential Geom. Appl. 29 (2011), 590–596. (2011) MR2811668DOI10.1016/j.difgeo.2011.04.039
- Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L., 10.2989/16073606.2017.1305463, Quaest. Math. 40 (2017), 605–616. (2017) MR3691472DOI10.2989/16073606.2017.1305463
- Barbosa, J.L.M., Colares, A.G., 10.1023/A:1006514303828, Ann. Global Anal. Geom. 15 (1997), 277–297. (1997) Zbl0891.53044DOI10.1023/A:1006514303828
- Barbosa, J.L.M., do Carmo, M., 10.1007/BF01215045, Math. Z. 185 (1984), 339–353. (1984) Zbl0513.53002DOI10.1007/BF01215045
- Barbosa, J.L.M., do Carmo, M., Eschenburg, J., Stability of hypersurfaces with constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), 1123–138. (1988)
- Barros, A., Sousa, P., 10.1090/S0002-9939-09-09862-1, Proc. Amer. Math. Soc. 137 (2009), 3105–3114. (2009) Zbl1189.53058MR2506469DOI10.1090/S0002-9939-09-09862-1
- Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984. (1984)
- Cheng, Q., 10.1090/S0002-9939-08-09304-0, Proc. Amer. Math. Soc. 136 (2008), 3309–3318. (2008) MR2407097DOI10.1090/S0002-9939-08-09304-0
- Cheng, S.Y., Yau, S.T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. (1977) Zbl0349.53041DOI10.1007/BF01425237
- de Lima, H.F., Velásquez, Marco A.L., A new characterization of -stable hypersurfaces in space forms, Arch. Math. (Brno) 47 (2011), 119–131. (2011) MR2813538
- Montiel, S., 10.1512/iumj.1999.48.1562, Indiana Univ. Math. J. 48 (1999), 711–748. (1999) DOI10.1512/iumj.1999.48.1562
- Reilly, R.C., 10.4310/jdg/1214431802, J. Differential Geom. 8 (1973), 465–477. (1973) Zbl0277.53030DOI10.4310/jdg/1214431802
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.