A half-space type property in the Euclidean sphere

Marco Antonio Lázaro Velásquez

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 1, page 49-63
  • ISSN: 0044-8753

Abstract

top
We study the notion of strong r -stability for the context of closed hypersurfaces Σ n ( n 3 ) with constant ( r + 1 ) -th mean curvature H r + 1 immersed into the Euclidean sphere 𝕊 n + 1 , where r { 1 , ... , n - 2 } . In this setting, under a suitable restriction on the r -th mean curvature H r , we establish that there are no r -strongly stable closed hypersurfaces immersed in a certain region of 𝕊 n + 1 , a region that is determined by a totally umbilical sphere of 𝕊 n + 1 . We also provide a rigidity result for such hypersurfaces.

How to cite

top

Velásquez, Marco Antonio Lázaro. "A half-space type property in the Euclidean sphere." Archivum Mathematicum 058.1 (2022): 49-63. <http://eudml.org/doc/298246>.

@article{Velásquez2022,
abstract = {We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_\{r+1\}$ immersed into the Euclidean sphere $\mathbb \{S\}^\{n+1\}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb \{S\}^\{n+1\}$, a region that is determined by a totally umbilical sphere of $\mathbb \{S\}^\{n+1\}$. We also provide a rigidity result for such hypersurfaces.},
author = {Velásquez, Marco Antonio Lázaro},
journal = {Archivum Mathematicum},
keywords = {Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere},
language = {eng},
number = {1},
pages = {49-63},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A half-space type property in the Euclidean sphere},
url = {http://eudml.org/doc/298246},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Velásquez, Marco Antonio Lázaro
TI - A half-space type property in the Euclidean sphere
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 1
SP - 49
EP - 63
AB - We study the notion of strong $r$-stability for the context of closed hypersurfaces $\Sigma ^n$ ($n\ge 3$) with constant $(r+1)$-th mean curvature $H_{r+1}$ immersed into the Euclidean sphere $\mathbb {S}^{n+1}$, where $r\in \lbrace 1,\ldots ,n-2\rbrace $. In this setting, under a suitable restriction on the $r$-th mean curvature $H_r$, we establish that there are no $r$-strongly stable closed hypersurfaces immersed in a certain region of $\mathbb {S}^{n+1}$, a region that is determined by a totally umbilical sphere of $\mathbb {S}^{n+1}$. We also provide a rigidity result for such hypersurfaces.
LA - eng
KW - Euclidean sphere; closed hypersurfaces; $(r+1)$-th mean curvature; strong $r$-stability; geodesic spheres; upper (lower) domain enclosed by a geodesic sphere
UR - http://eudml.org/doc/298246
ER -

References

top
  1. Alencar, H., do Carmo, M., Colares, A.G., 10.1007/BF03025712, Math. Z. 213 (1993), 117–131. (1993) Zbl0792.53057DOI10.1007/BF03025712
  2. Alías, L.J., Barros, A., Brasil Jr., A., 10.1090/S0002-9939-04-07559-8, Proc. Amer. Math. Soc. 133 (2005), 875–884. (2005) MR2113939DOI10.1090/S0002-9939-04-07559-8
  3. Alías, L.J., Brasil Jr., A., Perdomo, O., 10.1090/S0002-9939-07-08886-7, Proc. Amer. Math. Soc. 135 (2007), 3685–3693. (2007) MR2336585DOI10.1090/S0002-9939-07-08886-7
  4. Alías, L.J., Brasil Jr., A., Sousa Jr., L., 10.1007/s00574-004-0009-8, Bull. Braz. Math. Soc. 35 (2004), 165–175. (2004) MR2081021DOI10.1007/s00574-004-0009-8
  5. Aquino, C.P., de Lima, H., 10.1016/j.difgeo.2011.04.039, Differential Geom. Appl. 29 (2011), 590–596. (2011) MR2811668DOI10.1016/j.difgeo.2011.04.039
  6. Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L., 10.2989/16073606.2017.1305463, Quaest. Math. 40 (2017), 605–616. (2017) MR3691472DOI10.2989/16073606.2017.1305463
  7. Barbosa, J.L.M., Colares, A.G., 10.1023/A:1006514303828, Ann. Global Anal. Geom. 15 (1997), 277–297. (1997) Zbl0891.53044DOI10.1023/A:1006514303828
  8. Barbosa, J.L.M., do Carmo, M., 10.1007/BF01215045, Math. Z. 185 (1984), 339–353. (1984) Zbl0513.53002DOI10.1007/BF01215045
  9. Barbosa, J.L.M., do Carmo, M., Eschenburg, J., Stability of hypersurfaces with constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), 1123–138. (1988) 
  10. Barros, A., Sousa, P., 10.1090/S0002-9939-09-09862-1, Proc. Amer. Math. Soc. 137 (2009), 3105–3114. (2009) Zbl1189.53058MR2506469DOI10.1090/S0002-9939-09-09862-1
  11. Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984. (1984) 
  12. Cheng, Q., 10.1090/S0002-9939-08-09304-0, Proc. Amer. Math. Soc. 136 (2008), 3309–3318. (2008) MR2407097DOI10.1090/S0002-9939-08-09304-0
  13. Cheng, S.Y., Yau, S.T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. (1977) Zbl0349.53041DOI10.1007/BF01425237
  14. de Lima, H.F., Velásquez, Marco A.L., A new characterization of r -stable hypersurfaces in space forms, Arch. Math. (Brno) 47 (2011), 119–131. (2011) MR2813538
  15. Montiel, S., 10.1512/iumj.1999.48.1562, Indiana Univ. Math. J. 48 (1999), 711–748. (1999) DOI10.1512/iumj.1999.48.1562
  16. Reilly, R.C., 10.4310/jdg/1214431802, J. Differential Geom. 8 (1973), 465–477. (1973) Zbl0277.53030DOI10.4310/jdg/1214431802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.