A new characterization of -stable hypersurfaces in space forms
H. F. de Lima; M. A. Velásquez
Archivum Mathematicum (2011)
- Volume: 047, Issue: 2, page 119-131
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topde Lima, H. F., and Velásquez, M. A.. "A new characterization of $r$-stable hypersurfaces in space forms." Archivum Mathematicum 047.2 (2011): 119-131. <http://eudml.org/doc/116540>.
@article{deLima2011,
abstract = {In this paper we study the $r$-stability of closed hypersurfaces with constant $r$-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the $r$-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the $r$-th mean curvature.},
author = {de Lima, H. F., Velásquez, M. A.},
journal = {Archivum Mathematicum},
keywords = {space forms; $r$-th mean curvatures; $r$-stability; space form; -th mean curvature; -stability},
language = {eng},
number = {2},
pages = {119-131},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A new characterization of $r$-stable hypersurfaces in space forms},
url = {http://eudml.org/doc/116540},
volume = {047},
year = {2011},
}
TY - JOUR
AU - de Lima, H. F.
AU - Velásquez, M. A.
TI - A new characterization of $r$-stable hypersurfaces in space forms
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 2
SP - 119
EP - 131
AB - In this paper we study the $r$-stability of closed hypersurfaces with constant $r$-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the $r$-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the $r$-th mean curvature.
LA - eng
KW - space forms; $r$-th mean curvatures; $r$-stability; space form; -th mean curvature; -stability
UR - http://eudml.org/doc/116540
ER -
References
top- Alencar, H., do Carmo, M., Colares, A. G., 10.1007/BF03025712, Math. Z. 213 (1993), 117–131. (1993) Zbl0792.53057MR1217674DOI10.1007/BF03025712
- Barbosa, J. L. M., Colares, A. G., 10.1023/A:1006514303828, Ann. Global Anal. Geom. 15 (1997), 277–297. (1997) Zbl0891.53044MR1456513DOI10.1023/A:1006514303828
- Barbosa, J. L. M., do Carmo, M., 10.1007/BF01215045, Math. Z. 185 (3) (1984), 339–353. (1984) Zbl0513.53002MR0731682DOI10.1007/BF01215045
- Barbosa, J. L. M., do Carmo, M., Eschenburg, J., 10.1007/BF01161634, Math. Z. 197 (1) (1988), 123–138. (1988) Zbl0653.53045MR0917854DOI10.1007/BF01161634
- Barros, A., Sousa, P., 10.1090/S0002-9939-09-09862-1, Proc. Amer. Math. Soc. 137 (2009), 3105–3114. (2009) Zbl1189.53058MR2506469DOI10.1090/S0002-9939-09-09862-1
- Caminha, A., 10.1016/j.geomphys.2005.06.007, J. Geom. Phys. 56 (2006), 1144–1174. (2006) Zbl1102.53044MR2234043DOI10.1016/j.geomphys.2005.06.007
- Cheng, S. Y., Yau, S. T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. (1977) Zbl0349.53041MR0431043DOI10.1007/BF01425237
- de Lima, H. F., 10.1016/j.geomphys.2006.07.005, J. Geom. Phys. 57 (2007), 967–975. (2007) Zbl1111.53049MR2275203DOI10.1016/j.geomphys.2006.07.005
- He, Y., Li, H., 10.1007/s10455-007-9095-3, Ann. Global Anal. Geom. 34 (2008), 55–68. (2008) Zbl1156.53037MR2415178DOI10.1007/s10455-007-9095-3
- Reilly, R., Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Equations 8 (1973), 465–477. (1973) Zbl0277.53030MR0341351
- Rosenberg, H., Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), 217–239. (1993) Zbl0787.53046MR1216008
- Xin, Y., Minimal submanifolds and related topics, World Scientific Publishing co., Singapore, 2003. (2003) Zbl1055.53047MR2035469
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.