Schatten class generalized Toeplitz operators on the Bergman space
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1173-1188
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXu, Chunxu, and Yu, Tao. "Schatten class generalized Toeplitz operators on the Bergman space." Czechoslovak Mathematical Journal 71.4 (2021): 1173-1188. <http://eudml.org/doc/298263>.
@article{Xu2021,
abstract = {Let $\mu $ be a finite positive measure on the unit disk and let $j\ge 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_\{\mu \}^\{(j)\}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_\{\mu \}^\{(j)\}$ to be in the Schatten $p$-class for $1\le p<\infty $ on the Bergman space $A^\{2\}$, and then give a sufficient condition for $T_\{\mu \}^\{(j)\}$ to be in the Schatten $p$-class $(0<p<1)$ on $A^\{2\}$. We also discuss the generalized Toeplitz operators with general bounded symbols. If $\varphi \in L^\{\infty \}(D, \{\rm d\}A)$ and $1<p<\infty $, we define the generalized Toeplitz operator $T_\{\varphi \}^\{(j)\}$ on the Bergman space $A^p$ and characterize the compactness of the finite sum of operators of the form $T_\{\varphi _1\}^\{(j)\}\cdots T_\{\varphi _n\}^\{(j)\}$.},
author = {Xu, Chunxu, Yu, Tao},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Toeplitz operator; Schatten class; compactness; Bergman space; Berezin transform},
language = {eng},
number = {4},
pages = {1173-1188},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Schatten class generalized Toeplitz operators on the Bergman space},
url = {http://eudml.org/doc/298263},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Xu, Chunxu
AU - Yu, Tao
TI - Schatten class generalized Toeplitz operators on the Bergman space
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1173
EP - 1188
AB - Let $\mu $ be a finite positive measure on the unit disk and let $j\ge 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_{\mu }^{(j)}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\le p<\infty $ on the Bergman space $A^{2}$, and then give a sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class $(0<p<1)$ on $A^{2}$. We also discuss the generalized Toeplitz operators with general bounded symbols. If $\varphi \in L^{\infty }(D, {\rm d}A)$ and $1<p<\infty $, we define the generalized Toeplitz operator $T_{\varphi }^{(j)}$ on the Bergman space $A^p$ and characterize the compactness of the finite sum of operators of the form $T_{\varphi _1}^{(j)}\cdots T_{\varphi _n}^{(j)}$.
LA - eng
KW - generalized Toeplitz operator; Schatten class; compactness; Bergman space; Berezin transform
UR - http://eudml.org/doc/298263
ER -
References
top- Arazy, J., Fisher, S. D., Peetre, J., 10.2307/2374685, Am. J. Math. 110 (1988), 989-1053. (1988) Zbl0669.47017MR0970119DOI10.2307/2374685
- Engliš, M., 10.1007/s00041-006-6009-x, J. Fourier Anal. Appl. 13 (2007), 243-265. (2007) Zbl1128.47029MR2334609DOI10.1007/s00041-006-6009-x
- Luecking, D. H., 10.1016/0022-1236(87)90072-3, J. Funct. Anal. 73 (1987), 345-368. (1987) Zbl0618.47018MR0899655DOI10.1016/0022-1236(87)90072-3
- Miao, J., Zheng, D., 10.1007/s00020-002-1176-x, Integral Equations Oper. Theory 48 (2004), 61-79. (2004) Zbl1060.47036MR2029944DOI10.1007/s00020-002-1176-x
- Roman, S., 10.2307/2320788, Am. Math. Mon. 87 (1980), 805-809. (1980) Zbl0513.05009MR0602839DOI10.2307/2320788
- Simon, B., 10.1090/surv/120, London Mathematical Society Lecture Note Series 35. Cambridge University Press, Cambridge (1979). (1979) Zbl0423.47001MR0541149DOI10.1090/surv/120
- Suárez, D., 10.4171/RMI/401, Rev. Mat. Iberoam. 20 (2004), 563-610. (2004) Zbl1057.32005MR2073132DOI10.4171/RMI/401
- Suárez, D., 10.7900/jot.2013nov28.2023, J. Oper. Theory 73 (2015), 315-332. (2015) Zbl1399.32010MR3346124DOI10.7900/jot.2013nov28.2023
- Zhu, K., Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains, J. Oper. Theory 20 (1988), 329-357. (1988) Zbl0676.47016MR1004127
- Zhu, K., 10.1007/0-387-27539-8, Graduate Texts in Mathematics 226. Springer, New York (2005). (2005) Zbl1067.32005MR2115155DOI10.1007/0-387-27539-8
- Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138
- Zhu, K., Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball, New York J. Math. 13 (2007), 299-316. (2007) Zbl1127.47029MR2357717
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.