The generalized Toeplitz operators on the Fock space
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 231-246
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXu, Chunxu, and Yu, Tao. "The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$." Czechoslovak Mathematical Journal (2024): 231-246. <http://eudml.org/doc/299232>.
@article{Xu2024,
abstract = {Let $\mu $ be a positive Borel measure on the complex plane $\mathbb \{C\}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb \{N\}$. We study the generalized Toeplitz operators $T_\{\mu \}^\{(j)\}$ on the Fock space $F_\{\alpha \}^\{2\}$. We prove that $T_\{\mu \}^\{(j)\}$ is bounded (or compact) on $F_\{\alpha \}^\{2\}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_\{\mu \}^\{(j)\}$ to be in the Schatten $p$-class for $1\le p<\infty $.},
author = {Xu, Chunxu, Yu, Tao},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space},
language = {eng},
number = {1},
pages = {231-246},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The generalized Toeplitz operators on the Fock space $F_\{\alpha \}^\{2\}$},
url = {http://eudml.org/doc/299232},
year = {2024},
}
TY - JOUR
AU - Xu, Chunxu
AU - Yu, Tao
TI - The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 231
EP - 246
AB - Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\le p<\infty $.
LA - eng
KW - generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space
UR - http://eudml.org/doc/299232
ER -
References
top- Abreu, L. D., Faustino, N., 10.1090/proc/12211, Proc. Am. Math. Soc. 143 (2015), 4317-4323. (2015) Zbl1321.47055MR3373930DOI10.1090/proc/12211
- Coburn, L. A., 10.1007/978-3-0348-8362-7_7, Systems, Approximation, Singular Integral Operators, and Related Topics Operator Theory: Advances and Applications 129. Birkhäuser, Basel (2001), 169-178. (2001) Zbl1005.47033MR1882695DOI10.1007/978-3-0348-8362-7_7
- Cordero, E., Gröchenig, K., 10.1016/S0022-1236(03)00166-6, J. Funct. Anal. 205 (2003), 107-131. (2003) Zbl1047.47038MR2020210DOI10.1016/S0022-1236(03)00166-6
- Daubechies, I., 10.1109/18.9761, IEEE Trans. Inf. Theory 34 (1988), 605-612. (1988) Zbl0672.42007MR0966733DOI10.1109/18.9761
- Engliš, M., 10.1007/s00041-006-6009-x, J. Fourier Anal. 13 (2007), 243-265. (2007) Zbl1128.47029MR2334609DOI10.1007/s00041-006-6009-x
- Engliš, M., 10.1090/S0002-9947-08-04547-9, Trans. Am. Math. Soc. 361 (2009), 1039-1052. (2009) Zbl1165.47019MR2452833DOI10.1090/S0002-9947-08-04547-9
- Feichtinger, H. G., Nowak, K., 10.1307/mmj/1008719032, Mich. Math. J. 49 (2001), 13-21. (2001) Zbl1010.47021MR1827072DOI10.1307/mmj/1008719032
- Hu, Z., Lv, X., 10.1007/s00020-011-1887-y, Integral Equations Oper. Theory 70 (2011), 541-559. (2011) Zbl1262.47044MR2819157DOI10.1007/s00020-011-1887-y
- Isralowitz, J., Zhu, K., 10.1007/s00020-010-1768-9, Integral Equations Oper. Theory 66 (2010), 593-611. (2010) Zbl1218.47046MR2609242DOI10.1007/s00020-010-1768-9
- Lo, M.-L., 10.1007/s00020-006-1462-0, Integral Equations Oper. Theory 57 (2007), 397-412. (2007) Zbl1141.47025MR2307818DOI10.1007/s00020-006-1462-0
- Luecking, D. H., 10.1016/0022-1236(87)90072-3, J. Funct. Anal. 73 (1987), 345-368. (1987) Zbl0618.47018MR0899655DOI10.1016/0022-1236(87)90072-3
- Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). (1991) Zbl0867.46001MR1157815
- Suárez, D., 10.4171/RMI/401, Rev. Mat. Iberoam. 20 (2004), 563-610. (2004) Zbl1057.32005MR2073132DOI10.4171/RMI/401
- Suárez, D., 10.7900/jot.2013nov28.2023, J. Oper. Theory 73 (2015), 315-332. (2015) Zbl1399.32010MR3346124DOI10.7900/jot.2013nov28.2023
- Wang, X., Cao, G., Zhu, K., 10.1007/s00020-013-2066-0, Integral Equations Oper. Theory 77 (2013), 355-370. (2013) Zbl1317.47026MR3116663DOI10.1007/s00020-013-2066-0
- Xu, C., Yu, T., 10.21136/CMJ.2021.0336-20, Czech. Math. J. 71 (2021), 1173-1188. (2021) Zbl07442483MR4339120DOI10.21136/CMJ.2021.0336-20
- Zhu, K., Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains, J. Oper. Theory 20 (1988), 329-357. (1988) Zbl0676.47016MR1004127
- Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138. AMS, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138
- Zhu, K., 10.1007/978-1-4419-8801-0, Graduate Texts in Mathematics 263. Springer, New York (2012). (2012) Zbl1262.30003MR2934601DOI10.1007/978-1-4419-8801-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.