The generalized Toeplitz operators on the Fock space F α 2

Chunxu Xu; Tao Yu

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 231-246
  • ISSN: 0011-4642

Abstract

top
Let μ be a positive Borel measure on the complex plane n and let j = ( j 1 , , j n ) with j i . We study the generalized Toeplitz operators T μ ( j ) on the Fock space F α 2 . We prove that T μ ( j ) is bounded (or compact) on F α 2 if and only if μ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < .

How to cite

top

Xu, Chunxu, and Yu, Tao. "The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$." Czechoslovak Mathematical Journal (2024): 231-246. <http://eudml.org/doc/299232>.

@article{Xu2024,
abstract = {Let $\mu $ be a positive Borel measure on the complex plane $\mathbb \{C\}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb \{N\}$. We study the generalized Toeplitz operators $T_\{\mu \}^\{(j)\}$ on the Fock space $F_\{\alpha \}^\{2\}$. We prove that $T_\{\mu \}^\{(j)\}$ is bounded (or compact) on $F_\{\alpha \}^\{2\}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_\{\mu \}^\{(j)\}$ to be in the Schatten $p$-class for $1\le p<\infty $.},
author = {Xu, Chunxu, Yu, Tao},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space},
language = {eng},
number = {1},
pages = {231-246},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The generalized Toeplitz operators on the Fock space $F_\{\alpha \}^\{2\}$},
url = {http://eudml.org/doc/299232},
year = {2024},
}

TY - JOUR
AU - Xu, Chunxu
AU - Yu, Tao
TI - The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 231
EP - 246
AB - Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\le p<\infty $.
LA - eng
KW - generalized Toeplitz operator; boundedness; compactness; Schatten class; Fock space
UR - http://eudml.org/doc/299232
ER -

References

top
  1. Abreu, L. D., Faustino, N., 10.1090/proc/12211, Proc. Am. Math. Soc. 143 (2015), 4317-4323. (2015) Zbl1321.47055MR3373930DOI10.1090/proc/12211
  2. Coburn, L. A., 10.1007/978-3-0348-8362-7_7, Systems, Approximation, Singular Integral Operators, and Related Topics Operator Theory: Advances and Applications 129. Birkhäuser, Basel (2001), 169-178. (2001) Zbl1005.47033MR1882695DOI10.1007/978-3-0348-8362-7_7
  3. Cordero, E., Gröchenig, K., 10.1016/S0022-1236(03)00166-6, J. Funct. Anal. 205 (2003), 107-131. (2003) Zbl1047.47038MR2020210DOI10.1016/S0022-1236(03)00166-6
  4. Daubechies, I., 10.1109/18.9761, IEEE Trans. Inf. Theory 34 (1988), 605-612. (1988) Zbl0672.42007MR0966733DOI10.1109/18.9761
  5. Engliš, M., 10.1007/s00041-006-6009-x, J. Fourier Anal. 13 (2007), 243-265. (2007) Zbl1128.47029MR2334609DOI10.1007/s00041-006-6009-x
  6. Engliš, M., 10.1090/S0002-9947-08-04547-9, Trans. Am. Math. Soc. 361 (2009), 1039-1052. (2009) Zbl1165.47019MR2452833DOI10.1090/S0002-9947-08-04547-9
  7. Feichtinger, H. G., Nowak, K., 10.1307/mmj/1008719032, Mich. Math. J. 49 (2001), 13-21. (2001) Zbl1010.47021MR1827072DOI10.1307/mmj/1008719032
  8. Hu, Z., Lv, X., 10.1007/s00020-011-1887-y, Integral Equations Oper. Theory 70 (2011), 541-559. (2011) Zbl1262.47044MR2819157DOI10.1007/s00020-011-1887-y
  9. Isralowitz, J., Zhu, K., 10.1007/s00020-010-1768-9, Integral Equations Oper. Theory 66 (2010), 593-611. (2010) Zbl1218.47046MR2609242DOI10.1007/s00020-010-1768-9
  10. Lo, M.-L., 10.1007/s00020-006-1462-0, Integral Equations Oper. Theory 57 (2007), 397-412. (2007) Zbl1141.47025MR2307818DOI10.1007/s00020-006-1462-0
  11. Luecking, D. H., 10.1016/0022-1236(87)90072-3, J. Funct. Anal. 73 (1987), 345-368. (1987) Zbl0618.47018MR0899655DOI10.1016/0022-1236(87)90072-3
  12. Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). (1991) Zbl0867.46001MR1157815
  13. Suárez, D., 10.4171/RMI/401, Rev. Mat. Iberoam. 20 (2004), 563-610. (2004) Zbl1057.32005MR2073132DOI10.4171/RMI/401
  14. Suárez, D., 10.7900/jot.2013nov28.2023, J. Oper. Theory 73 (2015), 315-332. (2015) Zbl1399.32010MR3346124DOI10.7900/jot.2013nov28.2023
  15. Wang, X., Cao, G., Zhu, K., 10.1007/s00020-013-2066-0, Integral Equations Oper. Theory 77 (2013), 355-370. (2013) Zbl1317.47026MR3116663DOI10.1007/s00020-013-2066-0
  16. Xu, C., Yu, T., 10.21136/CMJ.2021.0336-20, Czech. Math. J. 71 (2021), 1173-1188. (2021) Zbl07442483MR4339120DOI10.21136/CMJ.2021.0336-20
  17. Zhu, K., Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains, J. Oper. Theory 20 (1988), 329-357. (1988) Zbl0676.47016MR1004127
  18. Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138. AMS, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138
  19. Zhu, K., 10.1007/978-1-4419-8801-0, Graduate Texts in Mathematics 263. Springer, New York (2012). (2012) Zbl1262.30003MR2934601DOI10.1007/978-1-4419-8801-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.