Algebraic restrictions on geometric realizations of curvature models

Corey Dunn; Zoë Smith

Archivum Mathematicum (2021)

  • Volume: 057, Issue: 3, page 175-194
  • ISSN: 0044-8753

Abstract

top
We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.

How to cite

top

Dunn, Corey, and Smith, Zoë. "Algebraic restrictions on geometric realizations of curvature models." Archivum Mathematicum 057.3 (2021): 175-194. <http://eudml.org/doc/298264>.

@article{Dunn2021,
abstract = {We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.},
author = {Dunn, Corey, Smith, Zoë},
journal = {Archivum Mathematicum},
keywords = {curvature model; curvature homogeneous; homothethy curvature homogeneous},
language = {eng},
number = {3},
pages = {175-194},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Algebraic restrictions on geometric realizations of curvature models},
url = {http://eudml.org/doc/298264},
volume = {057},
year = {2021},
}

TY - JOUR
AU - Dunn, Corey
AU - Smith, Zoë
TI - Algebraic restrictions on geometric realizations of curvature models
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 3
SP - 175
EP - 194
AB - We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.
LA - eng
KW - curvature model; curvature homogeneous; homothethy curvature homogeneous
UR - http://eudml.org/doc/298264
ER -

References

top
  1. Belger, M., Kowalski, O., Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point, Math. Nachr. 168 (1994), no. 1, 209–225. (1994) MR1282640
  2. Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L., 10.1016/0393-0440(90)90007-P, J. Geom. Phys. 7 (1990), 571–581. (1990) MR1131913DOI10.1016/0393-0440(90)90007-P
  3. Calvaruso, G., 10.1016/j.geomphys.2006.10.005, J. Geom. Phys. 57 (2007), 1279–1291. (2007) Zbl1112.53051MR2287304DOI10.1016/j.geomphys.2006.10.005
  4. Dunn, C., Luna, A., Sbiti, S., 10.1007/s00022-020-0528-5, J. Geom. 111 (1) (2020), 17 pp. (2020) MR4076679DOI10.1007/s00022-020-0528-5
  5. Dunn, C., McDonald, C., 10.1007/s10455-013-9403-z, Ann. Global Anal. Geom. 45 (2014), no. 4, 303–317. (2014) MR3180951DOI10.1007/s10455-013-9403-z
  6. García-Río, E., Gilkey, P., Nikčević, S., 10.1007/s10455-015-9462-4, Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170. (2015) MR3376877DOI10.1007/s10455-015-9462-4
  7. Gilkey, P., Relating algebraic properties of the curvature tensor to geometry, Novi Sad J. Math. 29 (1999), no. 3, 109–119. (1999) MR1770990
  8. Gilkey, P., Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2001. (2001) MR1877530
  9. Gilkey, P., The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds, Imperial College Press, 2007. (2007) Zbl1128.53041MR2351705
  10. Gray, A., 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259–280. DOI: http://dx.doi.org/https://doi.org/10.1007/BF00151525 (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
  11. Klinger, R., A basis that reduces to zero as many curvature components as possible, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248. (1991) MR1138290
  12. Kowalski, O., Prüfer, F., Curvature tensors in dimension four which do not belong to any curvature homogeneous space, Arch. Math. (Brno) 30 (1994), no. 1, 45–57. (1994) MR1282112
  13. Kowalski, O., Vanžurová, A., 10.1002/mana.201000008, Math. Nachr. 284 (2011), no. 17–18, 2127–2132. (2011) MR2859752DOI10.1002/mana.201000008
  14. Kowalski, O., Vanžurová, A., 10.1007/s00025-011-0177-y, Results Math. 63 (2013), 129–134. (2013) MR3009676DOI10.1007/s00025-011-0177-y
  15. Lee, J., Riemannian Manifolds: An Introduction to Curvature, Springer-Verlag New York, Inc., 1997. (1997) MR1468735
  16. Singer, I.M., 10.1002/cpa.3160130408, Commun. Pure Appl. Math 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
  17. Tricerri, F., Vanhecke, L., Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible, C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235. (1986) MR0832051
  18. Tsankov, Y., 10.4064/bc69-0-16, Banach Center Publ. 69 (2005), 205–209. (2005) MR2189568DOI10.4064/bc69-0-16

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.