Algebraic restrictions on geometric realizations of curvature models
Archivum Mathematicum (2021)
- Volume: 057, Issue: 3, page 175-194
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDunn, Corey, and Smith, Zoë. "Algebraic restrictions on geometric realizations of curvature models." Archivum Mathematicum 057.3 (2021): 175-194. <http://eudml.org/doc/298264>.
@article{Dunn2021,
abstract = {We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.},
author = {Dunn, Corey, Smith, Zoë},
journal = {Archivum Mathematicum},
keywords = {curvature model; curvature homogeneous; homothethy curvature homogeneous},
language = {eng},
number = {3},
pages = {175-194},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Algebraic restrictions on geometric realizations of curvature models},
url = {http://eudml.org/doc/298264},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Dunn, Corey
AU - Smith, Zoë
TI - Algebraic restrictions on geometric realizations of curvature models
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 3
SP - 175
EP - 194
AB - We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.
LA - eng
KW - curvature model; curvature homogeneous; homothethy curvature homogeneous
UR - http://eudml.org/doc/298264
ER -
References
top- Belger, M., Kowalski, O., Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point, Math. Nachr. 168 (1994), no. 1, 209–225. (1994) MR1282640
- Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L., 10.1016/0393-0440(90)90007-P, J. Geom. Phys. 7 (1990), 571–581. (1990) MR1131913DOI10.1016/0393-0440(90)90007-P
- Calvaruso, G., 10.1016/j.geomphys.2006.10.005, J. Geom. Phys. 57 (2007), 1279–1291. (2007) Zbl1112.53051MR2287304DOI10.1016/j.geomphys.2006.10.005
- Dunn, C., Luna, A., Sbiti, S., 10.1007/s00022-020-0528-5, J. Geom. 111 (1) (2020), 17 pp. (2020) MR4076679DOI10.1007/s00022-020-0528-5
- Dunn, C., McDonald, C., 10.1007/s10455-013-9403-z, Ann. Global Anal. Geom. 45 (2014), no. 4, 303–317. (2014) MR3180951DOI10.1007/s10455-013-9403-z
- García-Río, E., Gilkey, P., Nikčević, S., 10.1007/s10455-015-9462-4, Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170. (2015) MR3376877DOI10.1007/s10455-015-9462-4
- Gilkey, P., Relating algebraic properties of the curvature tensor to geometry, Novi Sad J. Math. 29 (1999), no. 3, 109–119. (1999) MR1770990
- Gilkey, P., Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2001. (2001) MR1877530
- Gilkey, P., The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds, Imperial College Press, 2007. (2007) Zbl1128.53041MR2351705
- Gray, A., 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259–280. DOI: http://dx.doi.org/https://doi.org/10.1007/BF00151525 (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
- Klinger, R., A basis that reduces to zero as many curvature components as possible, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248. (1991) MR1138290
- Kowalski, O., Prüfer, F., Curvature tensors in dimension four which do not belong to any curvature homogeneous space, Arch. Math. (Brno) 30 (1994), no. 1, 45–57. (1994) MR1282112
- Kowalski, O., Vanžurová, A., 10.1002/mana.201000008, Math. Nachr. 284 (2011), no. 17–18, 2127–2132. (2011) MR2859752DOI10.1002/mana.201000008
- Kowalski, O., Vanžurová, A., 10.1007/s00025-011-0177-y, Results Math. 63 (2013), 129–134. (2013) MR3009676DOI10.1007/s00025-011-0177-y
- Lee, J., Riemannian Manifolds: An Introduction to Curvature, Springer-Verlag New York, Inc., 1997. (1997) MR1468735
- Singer, I.M., 10.1002/cpa.3160130408, Commun. Pure Appl. Math 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
- Tricerri, F., Vanhecke, L., Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible, C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235. (1986) MR0832051
- Tsankov, Y., 10.4064/bc69-0-16, Banach Center Publ. 69 (2005), 205–209. (2005) MR2189568DOI10.4064/bc69-0-16
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.