Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda; Yoshihiro Mizuta; Takao Ohno; Tetsu Shimomura

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 511-528
  • ISSN: 0011-4642

Abstract

top
Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

How to cite

top

Maeda, Fumi-Yuki, et al. "Trudinger's inequality for double phase functionals with variable exponents." Czechoslovak Mathematical Journal 71.2 (2021): 511-528. <http://eudml.org/doc/298274>.

@article{Maeda2021,
abstract = {Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces $L^\{\Phi ,\kappa \}(G)$ under conditions on $\Phi $ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals $\Phi (x,t) = t^\{p(x)\} + a(x) t^\{q(x)\}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions and $a(\cdot )$ is nonnegative, bounded and Hölder continuous.},
author = {Maeda, Fumi-Yuki, Mizuta, Yoshihiro, Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riesz potential; Trudinger's inequality; Musielak-Orlicz-Morrey space; double phase functional},
language = {eng},
number = {2},
pages = {511-528},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Trudinger's inequality for double phase functionals with variable exponents},
url = {http://eudml.org/doc/298274},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Maeda, Fumi-Yuki
AU - Mizuta, Yoshihiro
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Trudinger's inequality for double phase functionals with variable exponents
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 511
EP - 528
AB - Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces $L^{\Phi ,\kappa }(G)$ under conditions on $\Phi $ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals $\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions and $a(\cdot )$ is nonnegative, bounded and Hölder continuous.
LA - eng
KW - Riesz potential; Trudinger's inequality; Musielak-Orlicz-Morrey space; double phase functional
UR - http://eudml.org/doc/298274
ER -

References

top
  1. Adams, D. R., Hedberg, L. I., 10.1007/978-3-662-03282-4, Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). (1996) Zbl0834.46021MR1411441DOI10.1007/978-3-662-03282-4
  2. Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A., 10.1016/j.jfa.2018.05.015, J. Funct. Anal. 275 (2018), 2538-2571. (2018) Zbl1405.42042MR3847479DOI10.1016/j.jfa.2018.05.015
  3. Baroni, P., Colombo, M., Mingione, G., 10.1090/spmj/1392, St. Petersbg. Math. J. 27 (2016), 347-379. (2016) Zbl1335.49057MR3570955DOI10.1090/spmj/1392
  4. Baroni, P., Colombo, M., Mingione, G., 10.1007/s00526-018-1332-z, Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. (2018) Zbl1394.49034MR3775180DOI10.1007/s00526-018-1332-z
  5. Colombo, M., Mingione, G., 10.1007/s00205-015-0859-9, Arch. Ration. Mech. Anal. 218 (2015), 219-273. (2015) Zbl1325.49042MR3360738DOI10.1007/s00205-015-0859-9
  6. Colombo, M., Mingione, G., 10.1007/s00205-014-0785-2, Arch. Ration. Mech. Anal. 215 (2015), 443-496. (2015) Zbl1322.49065MR3294408DOI10.1007/s00205-014-0785-2
  7. Futamura, T., Mizuta, Y., 10.7153/mia-08-58, Math. Inequal. Appl. 8 (2005), 619-631. (2005) Zbl1087.31004MR2174890DOI10.7153/mia-08-58
  8. Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. (2006) Zbl1100.31002MR2248828
  9. Futamura, T., Mizuta, Y., Shimomura, T., 10.1016/j.jmaa.2010.01.053, J. Math. Anal. Appl. 366 (2010), 391-417. (2010) Zbl1193.46016MR2600488DOI10.1016/j.jmaa.2010.01.053
  10. Hästö, P., 10.1016/j.jfa.2015.10.002, J. Funct. Anal. 269 (2015), 4038-4048 corrigendum ibid. 271 240-243 2016. (2015) Zbl1338.47032MR3418078DOI10.1016/j.jfa.2015.10.002
  11. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2012.03.008, Bull. Sci. Math. 137 (2013), 76-96. (2013) Zbl1267.46045MR3007101DOI10.1016/j.bulsci.2012.03.008
  12. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1007/s11118-012-9284-y, Potential Anal. 38 (2013), 515-535. (2013) Zbl1268.46024MR3015362DOI10.1007/s11118-012-9284-y
  13. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1515/forum-2018-0077, Forum Math. 31 (2019), 517-527. (2019) Zbl1423.46049MR3918454DOI10.1515/forum-2018-0077
  14. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.1080/17476933.2010.504837, Complex Var. Elliptic Equ. 56 (2011), 671-695. (2011) Zbl1228.31004MR2832209DOI10.1080/17476933.2010.504837
  15. Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2009.09.004, Bull. Sci. Math. 134 (2010), 12-36. (2010) Zbl1192.46027MR2579870DOI10.1016/j.bulsci.2009.09.004
  16. Mizuta, Y., Shimomura, T., 10.1524/anly.2000.20.3.201, Analysis, München 20 (2000), 201-223. (2000) Zbl0955.31002MR1778254DOI10.1524/anly.2000.20.3.201
  17. Mizuta, Y., Shimomura, T., 10.2969/jmsj/06020583, J. Math. Soc. Japan 60 (2008), 583-602. (2008) Zbl1161.46305MR2421989DOI10.2969/jmsj/06020583
  18. Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034. Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
  19. Nakai, E., Generalized fractional integrals on Orlicz-Morrey spaces, Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. (2004) Zbl1118.42005MR2146936
  20. Ohno, T., Shimomura, T., 10.1016/j.bulsci.2013.05.007, Bull. Sci. Math. 138 (2014), 225-235. (2014) Zbl1305.46022MR3175020DOI10.1016/j.bulsci.2013.05.007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.