Trudinger's inequality for double phase functionals with variable exponents
Fumi-Yuki Maeda; Yoshihiro Mizuta; Takao Ohno; Tetsu Shimomura
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 511-528
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMaeda, Fumi-Yuki, et al. "Trudinger's inequality for double phase functionals with variable exponents." Czechoslovak Mathematical Journal 71.2 (2021): 511-528. <http://eudml.org/doc/298274>.
@article{Maeda2021,
abstract = {Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces $L^\{\Phi ,\kappa \}(G)$ under conditions on $\Phi $ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals $\Phi (x,t) = t^\{p(x)\} + a(x) t^\{q(x)\}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions and $a(\cdot )$ is nonnegative, bounded and Hölder continuous.},
author = {Maeda, Fumi-Yuki, Mizuta, Yoshihiro, Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riesz potential; Trudinger's inequality; Musielak-Orlicz-Morrey space; double phase functional},
language = {eng},
number = {2},
pages = {511-528},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Trudinger's inequality for double phase functionals with variable exponents},
url = {http://eudml.org/doc/298274},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Maeda, Fumi-Yuki
AU - Mizuta, Yoshihiro
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Trudinger's inequality for double phase functionals with variable exponents
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 511
EP - 528
AB - Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces $L^{\Phi ,\kappa }(G)$ under conditions on $\Phi $ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals $\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions and $a(\cdot )$ is nonnegative, bounded and Hölder continuous.
LA - eng
KW - Riesz potential; Trudinger's inequality; Musielak-Orlicz-Morrey space; double phase functional
UR - http://eudml.org/doc/298274
ER -
References
top- Adams, D. R., Hedberg, L. I., 10.1007/978-3-662-03282-4, Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). (1996) Zbl0834.46021MR1411441DOI10.1007/978-3-662-03282-4
- Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A., 10.1016/j.jfa.2018.05.015, J. Funct. Anal. 275 (2018), 2538-2571. (2018) Zbl1405.42042MR3847479DOI10.1016/j.jfa.2018.05.015
- Baroni, P., Colombo, M., Mingione, G., 10.1090/spmj/1392, St. Petersbg. Math. J. 27 (2016), 347-379. (2016) Zbl1335.49057MR3570955DOI10.1090/spmj/1392
- Baroni, P., Colombo, M., Mingione, G., 10.1007/s00526-018-1332-z, Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. (2018) Zbl1394.49034MR3775180DOI10.1007/s00526-018-1332-z
- Colombo, M., Mingione, G., 10.1007/s00205-015-0859-9, Arch. Ration. Mech. Anal. 218 (2015), 219-273. (2015) Zbl1325.49042MR3360738DOI10.1007/s00205-015-0859-9
- Colombo, M., Mingione, G., 10.1007/s00205-014-0785-2, Arch. Ration. Mech. Anal. 215 (2015), 443-496. (2015) Zbl1322.49065MR3294408DOI10.1007/s00205-014-0785-2
- Futamura, T., Mizuta, Y., 10.7153/mia-08-58, Math. Inequal. Appl. 8 (2005), 619-631. (2005) Zbl1087.31004MR2174890DOI10.7153/mia-08-58
- Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. (2006) Zbl1100.31002MR2248828
- Futamura, T., Mizuta, Y., Shimomura, T., 10.1016/j.jmaa.2010.01.053, J. Math. Anal. Appl. 366 (2010), 391-417. (2010) Zbl1193.46016MR2600488DOI10.1016/j.jmaa.2010.01.053
- Hästö, P., 10.1016/j.jfa.2015.10.002, J. Funct. Anal. 269 (2015), 4038-4048 corrigendum ibid. 271 240-243 2016. (2015) Zbl1338.47032MR3418078DOI10.1016/j.jfa.2015.10.002
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2012.03.008, Bull. Sci. Math. 137 (2013), 76-96. (2013) Zbl1267.46045MR3007101DOI10.1016/j.bulsci.2012.03.008
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1007/s11118-012-9284-y, Potential Anal. 38 (2013), 515-535. (2013) Zbl1268.46024MR3015362DOI10.1007/s11118-012-9284-y
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1515/forum-2018-0077, Forum Math. 31 (2019), 517-527. (2019) Zbl1423.46049MR3918454DOI10.1515/forum-2018-0077
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.1080/17476933.2010.504837, Complex Var. Elliptic Equ. 56 (2011), 671-695. (2011) Zbl1228.31004MR2832209DOI10.1080/17476933.2010.504837
- Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2009.09.004, Bull. Sci. Math. 134 (2010), 12-36. (2010) Zbl1192.46027MR2579870DOI10.1016/j.bulsci.2009.09.004
- Mizuta, Y., Shimomura, T., 10.1524/anly.2000.20.3.201, Analysis, München 20 (2000), 201-223. (2000) Zbl0955.31002MR1778254DOI10.1524/anly.2000.20.3.201
- Mizuta, Y., Shimomura, T., 10.2969/jmsj/06020583, J. Math. Soc. Japan 60 (2008), 583-602. (2008) Zbl1161.46305MR2421989DOI10.2969/jmsj/06020583
- Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034. Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
- Nakai, E., Generalized fractional integrals on Orlicz-Morrey spaces, Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. (2004) Zbl1118.42005MR2146936
- Ohno, T., Shimomura, T., 10.1016/j.bulsci.2013.05.007, Bull. Sci. Math. 138 (2014), 225-235. (2014) Zbl1305.46022MR3175020DOI10.1016/j.bulsci.2013.05.007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.