Sobolev embeddings for variable exponent Riesz potentials on metric spaces.
Futamura, Toshihide; Mizuta, Yoshihiro; Shimomura, Tetsu
Annales Academiae Scientiarum Fennicae. Mathematica (2006)
- Volume: 31, Issue: 2, page 495-522
- ISSN: 1239-629X
Access Full Article
topHow to cite
topFutamura, Toshihide, Mizuta, Yoshihiro, and Shimomura, Tetsu. "Sobolev embeddings for variable exponent Riesz potentials on metric spaces.." Annales Academiae Scientiarum Fennicae. Mathematica 31.2 (2006): 495-522. <http://eudml.org/doc/126693>.
@article{Futamura2006,
author = {Futamura, Toshihide, Mizuta, Yoshihiro, Shimomura, Tetsu},
journal = {Annales Academiae Scientiarum Fennicae. Mathematica},
keywords = {variable exponent Lebesgue spaces; boundedness of the Hardy-Littlewood maximal functions},
language = {eng},
number = {2},
pages = {495-522},
publisher = {Finnish Academy of Science and Letters, Helsinki; Finnish Society of Sciences and Letters},
title = {Sobolev embeddings for variable exponent Riesz potentials on metric spaces.},
url = {http://eudml.org/doc/126693},
volume = {31},
year = {2006},
}
TY - JOUR
AU - Futamura, Toshihide
AU - Mizuta, Yoshihiro
AU - Shimomura, Tetsu
TI - Sobolev embeddings for variable exponent Riesz potentials on metric spaces.
JO - Annales Academiae Scientiarum Fennicae. Mathematica
PY - 2006
PB - Finnish Academy of Science and Letters, Helsinki; Finnish Society of Sciences and Letters
VL - 31
IS - 2
SP - 495
EP - 522
LA - eng
KW - variable exponent Lebesgue spaces; boundedness of the Hardy-Littlewood maximal functions
UR - http://eudml.org/doc/126693
ER -
Citations in EuDML Documents
top- Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura, Trudinger's inequality for double phase functionals with variable exponents
- Takao Ohno, Tetsu Shimomura, Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces
- Takao Ohno, Tetsu Shimomura, Musielak-Orlicz-Sobolev spaces on metric measure spaces
- Takao Ohno, Tetsu Shimomura, Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.