Some limit behavior for linear combinations of order statistics

Yu Miao; Mengyao Ma

Kybernetika (2021)

  • Volume: 57, Issue: 6, page 970-988
  • ISSN: 0023-5954

Abstract

top
In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the k -th order statistics from uniform distribution, Gini mean difference statistics and the k -th order statistics from general continuous distribution are obtained.

How to cite

top

Miao, Yu, and Ma, Mengyao. "Some limit behavior for linear combinations of order statistics." Kybernetika 57.6 (2021): 970-988. <http://eudml.org/doc/298275>.

@article{Miao2021,
abstract = {In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the $k$-th order statistics from uniform distribution, Gini mean difference statistics and the $k$-th order statistics from general continuous distribution are obtained.},
author = {Miao, Yu, Ma, Mengyao},
journal = {Kybernetika},
keywords = {linear combinations of order statistics; large deviation; moderate deviation; Gini mean difference statistics},
language = {eng},
number = {6},
pages = {970-988},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some limit behavior for linear combinations of order statistics},
url = {http://eudml.org/doc/298275},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Miao, Yu
AU - Ma, Mengyao
TI - Some limit behavior for linear combinations of order statistics
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 970
EP - 988
AB - In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the $k$-th order statistics from uniform distribution, Gini mean difference statistics and the $k$-th order statistics from general continuous distribution are obtained.
LA - eng
KW - linear combinations of order statistics; large deviation; moderate deviation; Gini mean difference statistics
UR - http://eudml.org/doc/298275
ER -

References

top
  1. Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B., , Trans. Amer. Math. Soc. 348 (1996), 2845-2866. MR1363941DOI
  2. Aleshkyavichene, A. K., , Lithuanian Math. J. 31 (1991), 145-156. MR1161365DOI
  3. Bentkus, V., Zitikis, R., , Lithuanian Math. J. 30 (1990), 215-222. MR1082474DOI
  4. Bjerve, S., 10.1214/aos/1176343800, Ann. Statist. 5 (1977), 357-369. MR0518648DOI10.1214/aos/1176343800
  5. Boistard, H., 10.1524/stnd.2007.25.2.89, Statist. Decisions 25 (2007), 89-125. MR2388858DOI10.1524/stnd.2007.25.2.89
  6. Callaert, H., Vandemaele, M., Veraverbeke, N., , Comm. Statist. A-Theory Methods 11 (1982), 2689-2698. MR0682121DOI
  7. Chernoff, H., Gastwirth, J. L., Johns, M. V. J., , Ann. Math. Statist 38 (1967), 52-72. MR0203874DOI
  8. H., David, A., Nagaraja, H. N., Order Statistics. Third edition., Wiley-Interscience, John Wiley and Sons,], Hoboken, NJ, 2003. MR1994955
  9. Dembo, A., Zeitouni, O., Large Deviations Techniques and Applications., Springer-Verlag, Berlin 2010. MR2571413
  10. Grané, A., Tchirina, A. V., , Statistics 47 (2013), 202-215 MR3023025DOI
  11. Gribkova, N., , Probab. Math. Statist. 37 (2017), 101-118. MR3652203DOI
  12. Helmers, R., 10.1214/aop/1176995662, Ann. Probab. 5 (1977), 940-953. MR0458716DOI10.1214/aop/1176995662
  13. Helmers, R., 10.1214/aop/1176994478, Ann. Probab. 9 (1981), 342-347. MR0606999DOI10.1214/aop/1176994478
  14. Helmers, R., Janssen, P., Serfling, R., , Probab. Theory Related Fields 79 (1988), 75-93. MR0952995DOI
  15. Li, D. L., Rao, M. B., Tomkins, R. J., , J. Multivariate Anal. 78 (2001), 191-217. MR1859755DOI
  16. Jiang, H., 10.1007/s10440-008-9375-3, Acta Appl. Math. 109 (2010), 1165-1178. MR2596195DOI10.1007/s10440-008-9375-3
  17. Jiang, H., Wang, W. G., Yu, L., , J. Statist. Plann. Inference 171 (2016), 135-146. MR3458074DOI
  18. Mason, D. M., 10.1214/aop/1176993727, Ann. Probab. 10 (1982), 1051-1057. MR0672306DOI10.1214/aop/1176993727
  19. Mason, D. M., Shorack, G. R., , J. Statist. Plann. Inference 25 (1990), 111-139. MR1055726DOI
  20. D., Mason, M., Shorack, G. R., , Ann. Probab. 20 (1992), 1779-1804. MR1188042DOI
  21. Miao, Y., Chen, Y. X., Xu, S. F., 10.1080/03610920903350523, Comm. Statist. Theory Methods 40 (2011), 8-14. MR2747194DOI10.1080/03610920903350523
  22. Plachky, D., Steinebach, J., , Period. Math. Hungar. 6 (1975), 343-345. MR0410870DOI
  23. Sen, P. K., , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), 327-340. MR0483171DOI
  24. Reiss, R. D., Approximate Distributions of Order Statistics. With Applications to Nonparametric Statistics., Springer-Verlag, New York 1989. MR0988164
  25. Stigler, S. M., , Ann. Statist. 2 (1974), 676-693. MR0373152DOI
  26. Stigler, S. M., 10.1214/aos/1176342756, Ann. Statist. 7 (1979), 466. MR0373152DOI10.1214/aos/1176342756
  27. A., Tchirina, V., , Acta Appl. Math. 97 (2007), 297-309. MR2329737DOI
  28. Zwet, W. R. van, A strong law for linear functions of order statistics., Ann. Probab. 8 (1980), 986-990. MR0586781
  29. Vandemaele, M., Veraverbeke, N., , Ann. Probab. 10 (1982), 423-434. MR0647514DOI
  30. Wellner, J. A., , Ann. Statist. 5 (1977), 473-480. MR0651528DOI
  31. Wellner, J. A., , Ann. Statist. 6 (1978), 1394. MR0651529DOI
  32. Xu, S. F., Ge, L., Miao, Y., , J. Korean Statist. Soc. 42 (2013), 1-7. MR3255361DOI
  33. Xu, S. F., C., Mei, L., Miao, Y., , J. Inequal. Appl. 2019, Paper No. 303. MR4062049DOI
  34. Xu, S. F., Miao, Y., , Bull. Korean Math. Soc. 51 (2014), 1399-1409. MR3267238DOI
  35. Xu, S. F., Miao, Y., , J. Inequal. Appl. 2017, Paper No. 295. MR3736591DOI
  36. Yao, S. X., Miao., Y., Nadarajah, S., , Filomat 29 (2015), 977-984. MR3359285DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.