Remarks on WDC sets
Commentationes Mathematicae Universitatis Carolinae (2021)
- Issue: 1, page 81-94
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPokorný, Dušan, and Zajíček, Luděk. "Remarks on WDC sets." Commentationes Mathematicae Universitatis Carolinae (2021): 81-94. <http://eudml.org/doc/298283>.
@article{Pokorný2021,
abstract = {We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets $A\subset \{\mathbb \{R\}\}^2$. We prove that, for such $A$, the distance function $d_A= \{\rm dist\}(\cdot ,A)$ is a “DC aura” for $A$, which implies that each closed locally WDC set in $\{\mathbb \{R\}\}^2$ is a WDC set. Another consequence is that compact WDC subsets of $\{\mathbb \{R\}\}^2$ form a Borel subset of the space of all compact sets.},
author = {Pokorný, Dušan, Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distance function; WDC set; DC function; DC aura; Borel complexity},
language = {eng},
number = {1},
pages = {81-94},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on WDC sets},
url = {http://eudml.org/doc/298283},
year = {2021},
}
TY - JOUR
AU - Pokorný, Dušan
AU - Zajíček, Luděk
TI - Remarks on WDC sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 81
EP - 94
AB - We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets $A\subset {\mathbb {R}}^2$. We prove that, for such $A$, the distance function $d_A= {\rm dist}(\cdot ,A)$ is a “DC aura” for $A$, which implies that each closed locally WDC set in ${\mathbb {R}}^2$ is a WDC set. Another consequence is that compact WDC subsets of ${\mathbb {R}}^2$ form a Borel subset of the space of all compact sets.
LA - eng
KW - distance function; WDC set; DC function; DC aura; Borel complexity
UR - http://eudml.org/doc/298283
ER -
References
top- Bangert V., 10.1007/BF01304757, Arch. Math. (Basel) 38 (1982), no. 1, 54–57. MR0646321DOI10.1007/BF01304757
- Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR2041617
- Clarke F. H., Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990. Zbl0696.49002MR1058436
- DeVore R. A., Lorentz G. G., 10.1007/978-3-662-02888-9_3, Grundlehren der Mathematischen Wissenschaften, 303, Springer, Berlin, 1993. MR1261635DOI10.1007/978-3-662-02888-9_3
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Fu J. H. G., Tubular neighborhoods in Euclidean spaces, Duke Math. J. 52 (1985), no. 4, 1025–1046. Zbl0592.52002MR0816398
- Fu J. H. G., Integral geometric regularity, in Tensor Valuations and Their Applications in Stochastic Geometry and Imaging, Lecture Notes in Math., 2177, Springer, Cham, 2017, pages 261–299. MR3702376
- Fu J. H. G., Pokorný D., Rataj J., 10.1016/j.aim.2017.03.003, Adv. Math. 311 (2017), 796–832. MR3628231DOI10.1016/j.aim.2017.03.003
- Hartman P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707–713. MR0110773DOI10.2140/pjm.1959.9.707
- Pokorný D., Rataj J., 10.1016/j.aim.2013.08.022, Adv. Math. 248 (2013), 963–985. MR3107534DOI10.1016/j.aim.2013.08.022
- Pokorný D., Rataj J., Zajíček L., 10.1002/mana.201700253, Math. Nachr. 292 (2019), no. 7, 1595–1626. MR3982330DOI10.1002/mana.201700253
- Pokorný D., Zajíček L., 10.1016/j.jmaa.2019.123536, J. Math. Anal. Appl. 482 (2020), no. 1, 123536, 14 pages. MR4015277DOI10.1016/j.jmaa.2019.123536
- Srivastava S. M., 10.1007/978-3-642-85473-6, Graduate Texts in Mathematics, 180, Springer, New York, 1998. Zbl0903.28001MR1619545DOI10.1007/978-3-642-85473-6
- Tuy H., 10.1007/978-3-319-31484-6, Springer Optimization and Its Applications, 110, Springer, Cham, 2016. Zbl0904.90156MR3560830DOI10.1007/978-3-319-31484-6
- Veselý L., Zajíček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pages. MR1016045
- Zähle M., 10.1007/BF00366271, Probab. Theory Relat. Fields 71 (1986), no. 1, 37–58. MR0814660DOI10.1007/BF00366271
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.