Remarks on WDC sets

Dušan Pokorný; Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 1, page 81-94
  • ISSN: 0010-2628

Abstract

top
We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets A 2 . We prove that, for such A , the distance function d A = dist ( · , A ) is a “DC aura” for A , which implies that each closed locally WDC set in 2 is a WDC set. Another consequence is that compact WDC subsets of 2 form a Borel subset of the space of all compact sets.

How to cite

top

Pokorný, Dušan, and Zajíček, Luděk. "Remarks on WDC sets." Commentationes Mathematicae Universitatis Carolinae (2021): 81-94. <http://eudml.org/doc/298283>.

@article{Pokorný2021,
abstract = {We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets $A\subset \{\mathbb \{R\}\}^2$. We prove that, for such $A$, the distance function $d_A= \{\rm dist\}(\cdot ,A)$ is a “DC aura” for $A$, which implies that each closed locally WDC set in $\{\mathbb \{R\}\}^2$ is a WDC set. Another consequence is that compact WDC subsets of $\{\mathbb \{R\}\}^2$ form a Borel subset of the space of all compact sets.},
author = {Pokorný, Dušan, Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distance function; WDC set; DC function; DC aura; Borel complexity},
language = {eng},
number = {1},
pages = {81-94},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on WDC sets},
url = {http://eudml.org/doc/298283},
year = {2021},
}

TY - JOUR
AU - Pokorný, Dušan
AU - Zajíček, Luděk
TI - Remarks on WDC sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 81
EP - 94
AB - We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets $A\subset {\mathbb {R}}^2$. We prove that, for such $A$, the distance function $d_A= {\rm dist}(\cdot ,A)$ is a “DC aura” for $A$, which implies that each closed locally WDC set in ${\mathbb {R}}^2$ is a WDC set. Another consequence is that compact WDC subsets of ${\mathbb {R}}^2$ form a Borel subset of the space of all compact sets.
LA - eng
KW - distance function; WDC set; DC function; DC aura; Borel complexity
UR - http://eudml.org/doc/298283
ER -

References

top
  1. Bangert V., 10.1007/BF01304757, Arch. Math. (Basel) 38 (1982), no. 1, 54–57. MR0646321DOI10.1007/BF01304757
  2. Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR2041617
  3. Clarke F. H., Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990. Zbl0696.49002MR1058436
  4. DeVore R. A., Lorentz G. G., 10.1007/978-3-662-02888-9_3, Grundlehren der Mathematischen Wissenschaften, 303, Springer, Berlin, 1993. MR1261635DOI10.1007/978-3-662-02888-9_3
  5. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  6. Fu J. H. G., Tubular neighborhoods in Euclidean spaces, Duke Math. J. 52 (1985), no. 4, 1025–1046. Zbl0592.52002MR0816398
  7. Fu J. H. G., Integral geometric regularity, in Tensor Valuations and Their Applications in Stochastic Geometry and Imaging, Lecture Notes in Math., 2177, Springer, Cham, 2017, pages 261–299. MR3702376
  8. Fu J. H. G., Pokorný D., Rataj J., 10.1016/j.aim.2017.03.003, Adv. Math. 311 (2017), 796–832. MR3628231DOI10.1016/j.aim.2017.03.003
  9. Hartman P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707–713. MR0110773DOI10.2140/pjm.1959.9.707
  10. Pokorný D., Rataj J., 10.1016/j.aim.2013.08.022, Adv. Math. 248 (2013), 963–985. MR3107534DOI10.1016/j.aim.2013.08.022
  11. Pokorný D., Rataj J., Zajíček L., 10.1002/mana.201700253, Math. Nachr. 292 (2019), no. 7, 1595–1626. MR3982330DOI10.1002/mana.201700253
  12. Pokorný D., Zajíček L., 10.1016/j.jmaa.2019.123536, J. Math. Anal. Appl. 482 (2020), no. 1, 123536, 14 pages. MR4015277DOI10.1016/j.jmaa.2019.123536
  13. Srivastava S. M., 10.1007/978-3-642-85473-6, Graduate Texts in Mathematics, 180, Springer, New York, 1998. Zbl0903.28001MR1619545DOI10.1007/978-3-642-85473-6
  14. Tuy H., 10.1007/978-3-319-31484-6, Springer Optimization and Its Applications, 110, Springer, Cham, 2016. Zbl0904.90156MR3560830DOI10.1007/978-3-319-31484-6
  15. Veselý L., Zajíček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pages. MR1016045
  16. Zähle M., 10.1007/BF00366271, Probab. Theory Relat. Fields 71 (1986), no. 1, 37–58. MR0814660DOI10.1007/BF00366271

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.