Asymptotic and exponential decay in mean square for delay geometric Brownian motion
Applications of Mathematics (2022)
- Volume: 67, Issue: 4, page 471-483
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHaškovec, Jan. "Asymptotic and exponential decay in mean square for delay geometric Brownian motion." Applications of Mathematics 67.4 (2022): 471-483. <http://eudml.org/doc/298301>.
@article{Haškovec2022,
abstract = {We derive sufficient conditions for asymptotic and monotone exponential decay in mean square of solutions of the geometric Brownian motion with delay. The conditions are written in terms of the parameters and are explicit for the case of asymptotic decay. For exponential decay, they are easily resolvable numerically. The analytical method is based on construction of a Lyapunov functional (asymptotic decay) and a forward-backward estimate for the square mean (exponential decay).},
author = {Haškovec, Jan},
journal = {Applications of Mathematics},
keywords = {geometric Brownian motion; delay; asymptotic decay; exponential decay},
language = {eng},
number = {4},
pages = {471-483},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic and exponential decay in mean square for delay geometric Brownian motion},
url = {http://eudml.org/doc/298301},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Haškovec, Jan
TI - Asymptotic and exponential decay in mean square for delay geometric Brownian motion
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 471
EP - 483
AB - We derive sufficient conditions for asymptotic and monotone exponential decay in mean square of solutions of the geometric Brownian motion with delay. The conditions are written in terms of the parameters and are explicit for the case of asymptotic decay. For exponential decay, they are easily resolvable numerically. The analytical method is based on construction of a Lyapunov functional (asymptotic decay) and a forward-backward estimate for the square mean (exponential decay).
LA - eng
KW - geometric Brownian motion; delay; asymptotic decay; exponential decay
UR - http://eudml.org/doc/298301
ER -
References
top- Appleby, J. A. D., Mao, X., Riedle, M., 10.1090/S0002-9939-08-09490-2, Proc. Am. Math. Soc. 137 (2009), 339-348. (2009) Zbl1156.60045MR2439458DOI10.1090/S0002-9939-08-09490-2
- Barbălat, I., Systèmes d'équations différentielles d'oscillations nonlinéaires, Acad. Républ. Popul. Roum., Rev. Math. Pur. Appl. 4 (1959), 267-270 French. (1959) Zbl0090.06601MR0111896
- El'sgol'ts, L. E., Norkin, S. B., 10.1016/s0076-5392(08)x6170-3, Mathematics in Science and Engineering. Academic Press, New York (1973). (1973) Zbl0287.34073MR0352647DOI10.1016/s0076-5392(08)x6170-3
- Erban, R., Haškovec, J., Sun, Y., 10.1137/15M1030467, SIAM J. Appl. Math. 76 (2016), 1535-1557. (2016) Zbl1345.60063MR3534479DOI10.1137/15M1030467
- Fridman, E., 10.1016/j.ejcon.2014.10.001, Eur. J. Control 20 (2014), 271-283. (2014) Zbl1403.93158MR3283869DOI10.1016/j.ejcon.2014.10.001
- Guillouzic, S., Fokker-Planck Approach to Stochastic Delay Differential Equations: Thesis, University of Ottawa, Ottawa (2000). (2000)
- Győri, I., Ladas, G., Oscillation Theory of Delay Differential Equations: With Applications, Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). (1991) Zbl0780.34048MR1168471
- Hull, J. C., Options, Futures, and other Derivatives, Prentice-Hall, Upper Saddle River (2003). (2003) Zbl1087.91025
- Kolmanovskij, V., Myshkis, A., 10.1007/978-94-015-8084-7, Mathematics and Its Applications. Soviet Series 85. Kluwer Academic Publishers, Dordrecht (1992). (1992) Zbl0785.34005MR1256486DOI10.1007/978-94-015-8084-7
- Kolmanovskij, V., Myshkis, A., 10.1007/978-94-017-1965-0, Mathematics and Its Applications (Dordrecht) 463. Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0917.34001MR1680144DOI10.1007/978-94-017-1965-0
- Mao, X., 10.1533/9780857099402, Ellis Horwood Series in Mathematics and Its Applications. Horwood Publishing, Chichester (1997). (1997) Zbl0892.60057MR1475218DOI10.1533/9780857099402
- Mao, X., 10.1049/iet-cta:20070006, IET Control Theory Appl. 1 (2007), 1551-1566. (2007) MR2352175DOI10.1049/iet-cta:20070006
- Mohammed, S.-E. A., Scheutzow, M. K. R., 10.1214/aop/1024404511, Ann. Probab. 25 (1997), 1210-1240. (1997) Zbl0885.60043MR1457617DOI10.1214/aop/1024404511
- ksendal, B. Ø, 10.1007/978-3-642-14394-6, Universitext. Springer, Berlin (2003). (2003) Zbl1025.60026MR2001996DOI10.1007/978-3-642-14394-6
- Smith, H., 10.1007/978-1-4419-7646-8, Texts in Applied Mathematics 57. Springer, New York (2011). (2011) Zbl1227.34001MR2724792DOI10.1007/978-1-4419-7646-8
- Sun, J., Chen, J., 10.1007/s11704-016-6120-3, Front. Comput. Sci. 11 (2017), 555-567. (2017) Zbl1405.34046DOI10.1007/s11704-016-6120-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.