On Bernstein inequalities for multivariate trigonometric polynomials in L p , 0 p

Laiyi Zhu; Xingjun Zhao

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 449-459
  • ISSN: 0011-4642

Abstract

top
Let 𝕋 n be the space of all trigonometric polynomials of degree not greater than n with complex coefficients. Arestov extended the result of Bernstein and others and proved that ( 1 / n ) T n ' p T n p for 0 p and T n 𝕋 n . We derive the multivariate version of the result of Golitschek and Lorentz T n cos α + 1 n T n sin α l ( m ) p T n p , 0 p for all trigonometric polynomials (with complex coeffcients) in m variables of degree at most n .

How to cite

top

Zhu, Laiyi, and Zhao, Xingjun. "On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\le p\le \infty $." Czechoslovak Mathematical Journal 72.2 (2022): 449-459. <http://eudml.org/doc/298302>.

@article{Zhu2022,
abstract = {Let $\{\mathbb \{T\}\}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \Vert (1/n) T^\{\prime \}_n \Vert _\{p\} \le \Vert T_n \Vert _\{p\}$ for $0 \le p \le \infty $ and $T_n \in \{\mathbb \{T\}\}_n$. We derive the multivariate version of the result of Golitschek and Lorentz \[ \Bigl \Vert \Bigl | T\_n \cos \alpha + \frac\{1\}\{n\} \nabla T\_n \sin \alpha \Bigr |\_\{l\_\{\infty \}^\{(m)\}\} \Bigr \Vert \_\{p\} \le \Vert T\_n \Vert \_\{p\}, \quad 0 \le p \le \infty \] for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.},
author = {Zhu, Laiyi, Zhao, Xingjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_\{p\}$-norm},
language = {eng},
number = {2},
pages = {449-459},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Bernstein inequalities for multivariate trigonometric polynomials in $L_\{p\}$, $0\le p\le \infty $},
url = {http://eudml.org/doc/298302},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Zhu, Laiyi
AU - Zhao, Xingjun
TI - On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\le p\le \infty $
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 449
EP - 459
AB - Let ${\mathbb {T}}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \Vert (1/n) T^{\prime }_n \Vert _{p} \le \Vert T_n \Vert _{p}$ for $0 \le p \le \infty $ and $T_n \in {\mathbb {T}}_n$. We derive the multivariate version of the result of Golitschek and Lorentz \[ \Bigl \Vert \Bigl | T_n \cos \alpha + \frac{1}{n} \nabla T_n \sin \alpha \Bigr |_{l_{\infty }^{(m)}} \Bigr \Vert _{p} \le \Vert T_n \Vert _{p}, \quad 0 \le p \le \infty \] for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.
LA - eng
KW - univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
UR - http://eudml.org/doc/298302
ER -

References

top
  1. Arestov, V. V., 10.1070/IM1982v018n01ABEH001375, Math. USSR, Izv. 18 (1982), 1-18 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 45 1981 3-22. (1982) Zbl0538.42001MR607574DOI10.1070/IM1982v018n01ABEH001375
  2. Conway, J. B., 10.1007/978-1-4612-0817-4, Graduate Texts in Mathematics 159. Springer, New York (1995). (1995) Zbl0887.30003MR1344449DOI10.1007/978-1-4612-0817-4
  3. Golitschek, M. V., Lorentz, G. G., 10.1216/RMJ-1989-19-1-145, Rocky Mt. J. Math. 19 (1989), 145-156. (1989) Zbl0738.42003MR1016168DOI10.1216/RMJ-1989-19-1-145
  4. Rahman, Q. I., Schmeisser, G., Les inégalités de Markoff et de Bernstein, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics] 86. Les Presses de l'Université de Montréal, Montréal (1983), French. (1983) Zbl0525.30001MR0729316
  5. Tung, S. H., 10.1090/S0002-9939-1982-0647901-6, Proc. Am. Math. Soc. 85 (1982), 73-76. (1982) Zbl0502.32004MR647901DOI10.1090/S0002-9939-1982-0647901-6
  6. Zygmund, A., 10.1112/plms/s2-34.1.392, Proc. Lond. Math. Soc., II. Ser. 34 (1932), 392-400. (1932) Zbl0005.35301MR1576159DOI10.1112/plms/s2-34.1.392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.