Quasi-trace functions on Lie algebras and their applications to 3-Lie algebras
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 559-591
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTan, Youjun, and Xu, Senrong. "Quasi-trace functions on Lie algebras and their applications to 3-Lie algebras." Czechoslovak Mathematical Journal 72.2 (2022): 559-591. <http://eudml.org/doc/298303>.
@article{Tan2022,
abstract = {We introduce the notion of quasi-trace functions on Lie algebras. As applications we study realizations of 3-dimensional and 4-dimensional 3-Lie algebras. Some comparison results on cohomologies of 3-Lie algebras and Leibniz algebras arising from quasi-trace functions are obtained.},
author = {Tan, Youjun, Xu, Senrong},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-trace function; 3-Lie algebra; Leibniz algebra},
language = {eng},
number = {2},
pages = {559-591},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quasi-trace functions on Lie algebras and their applications to 3-Lie algebras},
url = {http://eudml.org/doc/298303},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Tan, Youjun
AU - Xu, Senrong
TI - Quasi-trace functions on Lie algebras and their applications to 3-Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 559
EP - 591
AB - We introduce the notion of quasi-trace functions on Lie algebras. As applications we study realizations of 3-dimensional and 4-dimensional 3-Lie algebras. Some comparison results on cohomologies of 3-Lie algebras and Leibniz algebras arising from quasi-trace functions are obtained.
LA - eng
KW - quasi-trace function; 3-Lie algebra; Leibniz algebra
UR - http://eudml.org/doc/298303
ER -
References
top- Amayo, R. K., 10.1112/plms/s3-33.1.28, Proc. Lond. Math. Soc., III. Ser. 33 (1976), 28-36. (1976) Zbl0337.17004MR0409573DOI10.1112/plms/s3-33.1.28
- Amayo, R. K., 10.1112/plms/s3-33.1.37, Proc. Lond. Math. Soc., III. Ser. 33 (1976), 37-64. (1976) Zbl0337.17005MR0409574DOI10.1112/plms/s3-33.1.37
- Arnlind, J., Kitouni, A., Makhlouf, A., Silvestrov, S., 10.1007/978-3-642-55361-5_9, Algebra, Geometry and Mathematical Physics Springer Proceedings in Mathematics and Statistics 85. Springer, Berlin (2014), 123-144. (2014) Zbl1358.17004MR3275936DOI10.1007/978-3-642-55361-5_9
- Arnlind, J., Makhlouf, A., Silvestrov, S., 10.1063/1.3359004, J. Math. Phys. 51 (2010), Article ID 043515, 11 pages. (2010) Zbl1310.17001MR2662502DOI10.1063/1.3359004
- Awata, H., Li, M., Minic, D., Yoneya, T., 10.1088/1126-6708/2001/02/013, J. High Energy Phys. 2001 (2001), Article ID 13, 17 pages. (2001) MR1825236DOI10.1088/1126-6708/2001/02/013
- Bai, R., Bai, C., Wang, J., 10.1063/1.3436555, J. Math. Phys. 51 (2010), Article ID 063505, 12 pages. (2010) Zbl1311.17002MR2676482DOI10.1063/1.3436555
- Burde, D., Steinhoff, C., 10.1006/jabr.1998.7714, J. Algebra 214 (1999), 729-739. (1999) Zbl0932.17005MR1680532DOI10.1006/jabr.1998.7714
- Carter, R., 10.1017/CBO9780511614910, Cambridge Studies in Advanced Mathematics 96. Cambridge Univesity Press, Cambridge (2005). (2005) Zbl1110.17001MR2188930DOI10.1017/CBO9780511614910
- Daletskii, Y. L., Takhtajan, L. A., 10.1023/A:1007316732705, Lett. Math. Phys. 39 (1997), 127-141. (1997) Zbl0869.58024MR1437747DOI10.1023/A:1007316732705
- Azcárraga, J. A. de, Izquierdo, J. M., 10.1088/1751-8113/43/29/293001, J. Phys. A, Math. Theor. 43 (2010), Article ID 293001, 117 pages. (2010) Zbl1202.81187DOI10.1088/1751-8113/43/29/293001
- Dixmier, J., 10.1090/gsm/011, Graduate Studies in Mathematics 11. American Mathematical Society, Providence (1996). (1996) Zbl0867.17001MR1393197DOI10.1090/gsm/011
- Dudek, W. A., On some old and new problems in -ary groups, Quasigroups Relat. Syst. 8 (2001), 15-36. (2001) Zbl1052.20048MR1876783
- Erdmann, K., Wildon, M. J., 10.1007/1-84628-490-2, Springer Undergraduate Mathematics Series. Springer, London (2006). (2006) Zbl1139.17001MR2218355DOI10.1007/1-84628-490-2
- Figueroa-O'Farrill, J. M., 10.1063/1.3262528, J. Math. Phys. 50 (2009), Article ID 113514, 27 pages. (2009) Zbl1304.17005MR2567220DOI10.1063/1.3262528
- Filippov, V. T., 10.1007/BF00969110, Sib. Math. J. 26 (1985), 879-891. (1985) Zbl0594.17002MR0816511DOI10.1007/BF00969110
- García-Martínez, X., Turdibaev, R., Linden, T. Van der, Do -Lie algebras have universal enveloping algebras?, J. Lie Theory 28 (2018), 43-55. (2018) Zbl1433.17006MR3673814
- Jacobson, N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics 10. Interscience Publishers, New York (1962). (1962) Zbl0121.27504MR0559927
- Kasymov, S. M., 10.1007/BF02009328, Algebra Logic 26 (1987), 155-166. (1987) Zbl0658.17003MR0962883DOI10.1007/BF02009328
- Liu, J., Makhlouf, A., Sheng, Y., 10.1007/s10468-017-9693-0, Algebr. Represent. Theory 20 (2017), 1415-1431. (2017) Zbl1430.17011MR3735913DOI10.1007/s10468-017-9693-0
- Loday, J.-L., Une version non commutative des algèbres de Lie: Les algèbres de Leibniz, Enseign. Math., II. Sér. 39 (1993), 269-293 French. (1993) Zbl0806.55009MR1252069
- Loday, J.-L., Pirashvili, T., 10.1007/BF01445099, Math. Ann. 296 (1993), 139-158. (1993) Zbl0821.17022MR1213376DOI10.1007/BF01445099
- Song, L., Jiang, J., 10.1016/j.geomphys.2017.10.011, J. Geom. Phys. 124 (2018), 74-85. (2018) Zbl1430.17010MR3754499DOI10.1016/j.geomphys.2017.10.011
- Takhtajan, L., 10.1007/BF02103278, Commun. Math. Phys. 160 (1994), 295-315. (1994) Zbl0808.70015MR1262199DOI10.1007/BF02103278
- Tan, Y., Xu, S., 10.21136/CMJ.2019.0098-18, Czech. Math. J. 69 (2019), 1133-1164. (2019) Zbl07144882MR4039627DOI10.21136/CMJ.2019.0098-18
- Zhang, T., 10.1080/03081087.2014.891589, Linear Multilinear Algebra 63 (2015), 651-671. (2015) Zbl1387.17007MR3291556DOI10.1080/03081087.2014.891589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.