Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 541-558
  • ISSN: 0011-4642

Abstract

top
Let I be an ideal of a commutative Noetherian ring R . It is shown that the R -modules H I j ( M ) are I -cofinite for all finitely generated R -modules M and all j 0 if and only if the R -modules Ext R i ( N , H I j ( M ) ) and Tor i R ( N , H I j ( M ) ) are I -cofinite for all finitely generated R -modules M , N and all integers i , j 0 .

How to cite

top

Bahmanpour, Kamal. "Local cohomology, cofiniteness and homological functors of modules." Czechoslovak Mathematical Journal 72.2 (2022): 541-558. <http://eudml.org/doc/298309>.

@article{Bahmanpour2022,
abstract = {Let $I$ be an ideal of a commutative Noetherian ring $R$. It is shown that the $R$-modules $H^j_I(M)$ are $I$-cofinite for all finitely generated $R$-modules $M$ and all $j\in \mathbb \{N\}_0$ if and only if the $R$-modules $\{\rm Ext\}^i_R(N,H^j_I(M))$ and $\{\rm Tor\}^R_i(N,H^j_I(M))$ are $I$-cofinite for all finitely generated $R$-modules $M$, $N$ and all integers $i,j\in \mathbb \{N\}_0$.},
author = {Bahmanpour, Kamal},
journal = {Czechoslovak Mathematical Journal},
keywords = {cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring},
language = {eng},
number = {2},
pages = {541-558},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local cohomology, cofiniteness and homological functors of modules},
url = {http://eudml.org/doc/298309},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Bahmanpour, Kamal
TI - Local cohomology, cofiniteness and homological functors of modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 541
EP - 558
AB - Let $I$ be an ideal of a commutative Noetherian ring $R$. It is shown that the $R$-modules $H^j_I(M)$ are $I$-cofinite for all finitely generated $R$-modules $M$ and all $j\in \mathbb {N}_0$ if and only if the $R$-modules ${\rm Ext}^i_R(N,H^j_I(M))$ and ${\rm Tor}^R_i(N,H^j_I(M))$ are $I$-cofinite for all finitely generated $R$-modules $M$, $N$ and all integers $i,j\in \mathbb {N}_0$.
LA - eng
KW - cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring
UR - http://eudml.org/doc/298309
ER -

References

top
  1. Abazari, R., Bahmanpour, K., 10.1016/j.jalgebra.2010.11.016, J. Algebra 330 (2011), 507-516. (2011) Zbl1227.13010MR2774642DOI10.1016/j.jalgebra.2010.11.016
  2. Aghapournahr, M., Melkersson, L., 10.1016/j.jalgebra.2008.04.002, J. Algebra 320 (2008), 1275-1287. (2008) Zbl1153.13014MR2427643DOI10.1016/j.jalgebra.2008.04.002
  3. Bahmanpour, K., 10.1016/j.jalgebra.2017.04.019, J. Algebra 484 (2017), 168-197. (2017) Zbl1451.13060MR3656717DOI10.1016/j.jalgebra.2017.04.019
  4. Bahmanpour, K., 10.1080/00927872.2018.1506461, Commun. Algebra 47 (2019), 1327-1347. (2019) Zbl1420.13042MR3938559DOI10.1080/00927872.2018.1506461
  5. Bahmanpour, K., 10.1080/00927872.2018.1549668, Commun. Algebra 47 (2019), 4575-4585. (2019) Zbl1422.13018MR3991037DOI10.1080/00927872.2018.1549668
  6. Bahmanpour, K., 10.1080/00927872.2019.1640238, Commun. Algebra 48 (2020), 254-262. (2020) Zbl1444.13026MR4060028DOI10.1080/00927872.2019.1640238
  7. Bahmanpour, K., 10.1007/s13348-020-00298-y, Collect. Math. 72 (2021), 527-568. (2021) Zbl07401997MR4297143DOI10.1007/s13348-020-00298-y
  8. Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
  9. Bahmanpour, K., Naghipour, R., Sedghi, M., 10.1090/S0002-9939-2014-11836-3, Proc. Am. Math. Soc. 142 (2014), 1101-1107. (2014) Zbl1286.13017MR3162233DOI10.1090/S0002-9939-2014-11836-3
  10. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  11. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956DOI10.1017/CBO9780511608681
  12. Chiriacescu, G., 10.1112/S0024609399006499, Bull. Lond. Math. Soc. 32 (2000), 1-7. (2000) Zbl1018.13009MR1718769DOI10.1112/S0024609399006499
  13. Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
  14. Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
  15. Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
  16. Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
  17. Faltings, G., 10.1515/crll.1980.313.43, J. Reine Angew. Math. 313 (1980), 43-51 German. (1980) Zbl0411.13010MR0552461DOI10.1515/crll.1980.313.43
  18. Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Advanced Studies in Pure Mathematics (Amsterdam) 2. North-Holland, Amsterdam (1968), French. (1968) Zbl0197.47202MR2171939
  19. Hartshorne, R., 10.2307/1970720, Ann. Math. (2) 88 (1968), 403-450. (1968) Zbl0169.23302MR0232780DOI10.2307/1970720
  20. Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
  21. Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
  22. Huneke, C., Lyubeznik, G., 10.1007/BF01233420, Invent. Math. 102 (1990), 73-93. (1990) Zbl0717.13011MR1069240DOI10.1007/BF01233420
  23. Kawasaki, K.-I., 10.1112/S0024609397004347, Bull. Lond. Math. Soc. 30 (1998), 241-246. (1998) Zbl0930.13013MR1608094DOI10.1112/S0024609397004347
  24. Kubik, B., Leamer, M. J., Sather-Wagstaff, S., 10.1016/j.jpaa.2011.02.007, J. Pure Appl. Algebra 215 (2011), 2486-2503. (2011) Zbl1232.13008MR2793952DOI10.1016/j.jpaa.2011.02.007
  25. Marley, T., Vassilev, J. C., 10.1016/S0021-8693(02)00151-5, J. Algebra 256 (2002), 180-193. (2002) Zbl1042.13010MR1936885DOI10.1016/S0021-8693(02)00151-5
  26. Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
  27. Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
  28. Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
  29. Naghipour, R., Bahmanpour, K., Gorji, I. Khalili, 10.4064/cm136-2-4, Colloq. Math. 136 (2014), 221-230. (2014) Zbl1306.13012MR3257565DOI10.4064/cm136-2-4
  30. Pirmohammadi, G., Amoli, K. Ahmadi, Bahmanpour, K., 10.4064/cm6939-11-2016, Colloq. Math. 149 (2017), 225-238. (2017) Zbl1390.13055MR3697138DOI10.4064/cm6939-11-2016
  31. Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
  32. Zink, T., 10.1002/mana.19740640114, Math. Nachr. 64 (1974), 239-252 German. (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
  33. Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
  34. Zöschinger, H., 10.14492/hokmj/1381517790, Hokkaido Math. J. 17 (1988), 101-116 German. (1988) Zbl0653.13011MR0928469DOI10.14492/hokmj/1381517790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.