Local cohomology, cofiniteness and homological functors of modules
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 541-558
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBahmanpour, Kamal. "Local cohomology, cofiniteness and homological functors of modules." Czechoslovak Mathematical Journal 72.2 (2022): 541-558. <http://eudml.org/doc/298309>.
@article{Bahmanpour2022,
abstract = {Let $I$ be an ideal of a commutative Noetherian ring $R$. It is shown that the $R$-modules $H^j_I(M)$ are $I$-cofinite for all finitely generated $R$-modules $M$ and all $j\in \mathbb \{N\}_0$ if and only if the $R$-modules $\{\rm Ext\}^i_R(N,H^j_I(M))$ and $\{\rm Tor\}^R_i(N,H^j_I(M))$ are $I$-cofinite for all finitely generated $R$-modules $M$, $N$ and all integers $i,j\in \mathbb \{N\}_0$.},
author = {Bahmanpour, Kamal},
journal = {Czechoslovak Mathematical Journal},
keywords = {cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring},
language = {eng},
number = {2},
pages = {541-558},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local cohomology, cofiniteness and homological functors of modules},
url = {http://eudml.org/doc/298309},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Bahmanpour, Kamal
TI - Local cohomology, cofiniteness and homological functors of modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 541
EP - 558
AB - Let $I$ be an ideal of a commutative Noetherian ring $R$. It is shown that the $R$-modules $H^j_I(M)$ are $I$-cofinite for all finitely generated $R$-modules $M$ and all $j\in \mathbb {N}_0$ if and only if the $R$-modules ${\rm Ext}^i_R(N,H^j_I(M))$ and ${\rm Tor}^R_i(N,H^j_I(M))$ are $I$-cofinite for all finitely generated $R$-modules $M$, $N$ and all integers $i,j\in \mathbb {N}_0$.
LA - eng
KW - cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring
UR - http://eudml.org/doc/298309
ER -
References
top- Abazari, R., Bahmanpour, K., 10.1016/j.jalgebra.2010.11.016, J. Algebra 330 (2011), 507-516. (2011) Zbl1227.13010MR2774642DOI10.1016/j.jalgebra.2010.11.016
- Aghapournahr, M., Melkersson, L., 10.1016/j.jalgebra.2008.04.002, J. Algebra 320 (2008), 1275-1287. (2008) Zbl1153.13014MR2427643DOI10.1016/j.jalgebra.2008.04.002
- Bahmanpour, K., 10.1016/j.jalgebra.2017.04.019, J. Algebra 484 (2017), 168-197. (2017) Zbl1451.13060MR3656717DOI10.1016/j.jalgebra.2017.04.019
- Bahmanpour, K., 10.1080/00927872.2018.1506461, Commun. Algebra 47 (2019), 1327-1347. (2019) Zbl1420.13042MR3938559DOI10.1080/00927872.2018.1506461
- Bahmanpour, K., 10.1080/00927872.2018.1549668, Commun. Algebra 47 (2019), 4575-4585. (2019) Zbl1422.13018MR3991037DOI10.1080/00927872.2018.1549668
- Bahmanpour, K., 10.1080/00927872.2019.1640238, Commun. Algebra 48 (2020), 254-262. (2020) Zbl1444.13026MR4060028DOI10.1080/00927872.2019.1640238
- Bahmanpour, K., 10.1007/s13348-020-00298-y, Collect. Math. 72 (2021), 527-568. (2021) Zbl07401997MR4297143DOI10.1007/s13348-020-00298-y
- Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
- Bahmanpour, K., Naghipour, R., Sedghi, M., 10.1090/S0002-9939-2014-11836-3, Proc. Am. Math. Soc. 142 (2014), 1101-1107. (2014) Zbl1286.13017MR3162233DOI10.1090/S0002-9939-2014-11836-3
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956DOI10.1017/CBO9780511608681
- Chiriacescu, G., 10.1112/S0024609399006499, Bull. Lond. Math. Soc. 32 (2000), 1-7. (2000) Zbl1018.13009MR1718769DOI10.1112/S0024609399006499
- Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
- Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
- Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
- Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
- Faltings, G., 10.1515/crll.1980.313.43, J. Reine Angew. Math. 313 (1980), 43-51 German. (1980) Zbl0411.13010MR0552461DOI10.1515/crll.1980.313.43
- Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Advanced Studies in Pure Mathematics (Amsterdam) 2. North-Holland, Amsterdam (1968), French. (1968) Zbl0197.47202MR2171939
- Hartshorne, R., 10.2307/1970720, Ann. Math. (2) 88 (1968), 403-450. (1968) Zbl0169.23302MR0232780DOI10.2307/1970720
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
- Huneke, C., Lyubeznik, G., 10.1007/BF01233420, Invent. Math. 102 (1990), 73-93. (1990) Zbl0717.13011MR1069240DOI10.1007/BF01233420
- Kawasaki, K.-I., 10.1112/S0024609397004347, Bull. Lond. Math. Soc. 30 (1998), 241-246. (1998) Zbl0930.13013MR1608094DOI10.1112/S0024609397004347
- Kubik, B., Leamer, M. J., Sather-Wagstaff, S., 10.1016/j.jpaa.2011.02.007, J. Pure Appl. Algebra 215 (2011), 2486-2503. (2011) Zbl1232.13008MR2793952DOI10.1016/j.jpaa.2011.02.007
- Marley, T., Vassilev, J. C., 10.1016/S0021-8693(02)00151-5, J. Algebra 256 (2002), 180-193. (2002) Zbl1042.13010MR1936885DOI10.1016/S0021-8693(02)00151-5
- Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
- Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Naghipour, R., Bahmanpour, K., Gorji, I. Khalili, 10.4064/cm136-2-4, Colloq. Math. 136 (2014), 221-230. (2014) Zbl1306.13012MR3257565DOI10.4064/cm136-2-4
- Pirmohammadi, G., Amoli, K. Ahmadi, Bahmanpour, K., 10.4064/cm6939-11-2016, Colloq. Math. 149 (2017), 225-238. (2017) Zbl1390.13055MR3697138DOI10.4064/cm6939-11-2016
- Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
- Zink, T., 10.1002/mana.19740640114, Math. Nachr. 64 (1974), 239-252 German. (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
- Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
- Zöschinger, H., 10.14492/hokmj/1381517790, Hokkaido Math. J. 17 (1988), 101-116 German. (1988) Zbl0653.13011MR0928469DOI10.14492/hokmj/1381517790
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.