New Einstein metrics on Sp ( n ) which are non-naturally reductive

Shaoxiang Zhang; Huibin Chen

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 349-363
  • ISSN: 0011-4642

Abstract

top
We prove that there are at least two new non-naturally reductive Ad ( Sp ( l ) × Sp ( k ) × Sp ( k ) × Sp ( k ) ) invariant Einstein metrics on Sp ( l + 3 k ) ( k < l ) . It implies that every compact simple Lie group Sp ( n ) for n = l + 3 k > 4 admits at least 2 [ 1 4 ( n - 1 ) ] non-naturally reductive Ad ( Sp ( l ) × Sp ( k ) × Sp ( k ) × Sp ( k ) ) invariant Einstein metrics.

How to cite

top

Zhang, Shaoxiang, and Chen, Huibin. "New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive." Czechoslovak Mathematical Journal 72.2 (2022): 349-363. <http://eudml.org/doc/298312>.

@article{Zhang2022,
abstract = {We prove that there are at least two new non-naturally reductive $\{\rm Ad\}(\{\rm Sp\}(l)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k))$ invariant Einstein metrics on $\{\rm Sp\} (l+3k)$$(k < l)$. It implies that every compact simple Lie group $\{\rm Sp\} (n)$ for $n= l+3k>4$ admits at least $2[\tfrac\{1\}\{4\} (n-1)]$ non-naturally reductive $\{\rm Ad\}(\{\rm Sp\}(l)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k))$ invariant Einstein metrics.},
author = {Zhang, Shaoxiang, Chen, Huibin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Einstein metric; non-naturally reductive metric; compact Lie group; symplectic group},
language = {eng},
number = {2},
pages = {349-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New Einstein metrics on $\{\rm Sp\}(n)$ which are non-naturally reductive},
url = {http://eudml.org/doc/298312},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Zhang, Shaoxiang
AU - Chen, Huibin
TI - New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 349
EP - 363
AB - We prove that there are at least two new non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics on ${\rm Sp} (l+3k)$$(k < l)$. It implies that every compact simple Lie group ${\rm Sp} (n)$ for $n= l+3k>4$ admits at least $2[\tfrac{1}{4} (n-1)]$ non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics.
LA - eng
KW - Einstein metric; non-naturally reductive metric; compact Lie group; symplectic group
UR - http://eudml.org/doc/298312
ER -

References

top
  1. Arvanitoyeorgos, A., Dzhepko, V. V., Nikonorov, Y. G., 10.4153/CJM-2009-056-2, Can. J. Math. 61 (2009), 1201-1213. (2009) Zbl1183.53037MR2588419DOI10.4153/CJM-2009-056-2
  2. Arvanitoyeorgos, A., Mori, K., Sakane, Y., 10.1007/s10711-011-9681-1, Geom. Dedicate 160 (2012), 261-285. (2012) Zbl1253.53043MR2970054DOI10.1007/s10711-011-9681-1
  3. Arvanitoyeorgos, A., Sakane, Y., Statha, M., 10.1142/9789814719780_0001, Current Developments in Differential Geometry and its Related Fields World Scientific, Hackensack (2016), 1-22. (2016) Zbl1333.53053MR3494871DOI10.1142/9789814719780_0001
  4. Besse, A. L., 10.1007/978-3-540-74311-8, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1987). (1987) Zbl0613.53001MR0867684DOI10.1007/978-3-540-74311-8
  5. Chen, H., Chen, Z., Deng, S., 10.1016/j.geomphys.2017.09.011, J. Geom. Phys. 124 (2018), 268-285. (2018) Zbl1386.53053MR3754514DOI10.1016/j.geomphys.2017.09.011
  6. Chen, H., Chen, Z., Deng, S., 10.1007/s00229-017-0954-3, Manuscr. Math. 156 (2018), 127-136. (2018) Zbl1390.53040MR3783569DOI10.1007/s00229-017-0954-3
  7. Chen, Z., Chen, H., 10.1007/s11464-020-0818-0, Front. Math. China 15 (2020), 47-55. (2020) Zbl1447.53045MR4074344DOI10.1007/s11464-020-0818-0
  8. Chen, Z., Liang, K., 10.1007/s10455-014-9413-5, Ann. Global Anal. Geom. 46 (2014), 103-115. (2014) Zbl1301.53042MR3239276DOI10.1007/s10455-014-9413-5
  9. Chrysikos, I., Sakane, Y., 10.1016/j.geomphys.2017.01.030, J. Geom. Phys. 116 (2017), 152-186. (2017) Zbl1390.53041MR3623653DOI10.1016/j.geomphys.2017.01.030
  10. D'Atri, J. E., Ziller, W., 10.1090/memo/0215, Mem. Am. Math. Soc. 215 (1979), 72 pages. (1979) Zbl0404.53044MR0519928DOI10.1090/memo/0215
  11. Mori, K., Invariant Einstein Metrics on S U ( n ) That Are Not Naturally Reductive: Master Thesis, Osaka University, Osaka (1994). English Translation: Osaka University RPM 96010 (preprint series), 1996 Japanese. 
  12. Park, J.-S., Sakane, Y., 10.3836/tjm/1270042398, Tokyo J. Math. 20 (1997), 51-61. (1997) Zbl0884.53039MR1451858DOI10.3836/tjm/1270042398
  13. Wang, M., 10.4310/SDG.2001.v6.n1.a11, Surveys in Differential Geometry: Essays on Einstein Manifolds. Surv. Differ. Geom. VI International Press, Boston (1999), 287-325. (1999) Zbl1003.53037MR1798614DOI10.4310/SDG.2001.v6.n1.a11
  14. Wang, M., Einstein metrics from symmetry and bundle constructions: A sequel, Differential Geometry: Under the Influence of S.-S. Chern Advanced Lectures in Mathematics 22. Higher Education Press/International Press, Somerville (2012), 253-309. (2012) Zbl1262.53044MR3076055
  15. Wang, M., Ziller, W., 10.1007/BF01388738, Invent. Math. 84 (1986), 177-194. (1986) Zbl0596.53040MR0830044DOI10.1007/BF01388738
  16. Yan, Z., Deng, S., 10.1090/tran/7025, Trans. Am. Math. Soc. 369 (2017), 8587-8605. (2017) Zbl1433.53079MR3710636DOI10.1090/tran/7025
  17. Zhang, S., Chen, H., Deng, S., 10.1007/s10473-021-0315-x, Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 887-898. (2021) MR4245438DOI10.1007/s10473-021-0315-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.