New Einstein metrics on which are non-naturally reductive
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 349-363
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Shaoxiang, and Chen, Huibin. "New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive." Czechoslovak Mathematical Journal 72.2 (2022): 349-363. <http://eudml.org/doc/298312>.
@article{Zhang2022,
abstract = {We prove that there are at least two new non-naturally reductive $\{\rm Ad\}(\{\rm Sp\}(l)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k))$ invariant Einstein metrics on $\{\rm Sp\} (l+3k)$$(k < l)$. It implies that every compact simple Lie group $\{\rm Sp\} (n)$ for $n= l+3k>4$ admits at least $2[\tfrac\{1\}\{4\} (n-1)]$ non-naturally reductive $\{\rm Ad\}(\{\rm Sp\}(l)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k)\times \{\rm Sp\}(k))$ invariant Einstein metrics.},
author = {Zhang, Shaoxiang, Chen, Huibin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Einstein metric; non-naturally reductive metric; compact Lie group; symplectic group},
language = {eng},
number = {2},
pages = {349-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New Einstein metrics on $\{\rm Sp\}(n)$ which are non-naturally reductive},
url = {http://eudml.org/doc/298312},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Zhang, Shaoxiang
AU - Chen, Huibin
TI - New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 349
EP - 363
AB - We prove that there are at least two new non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics on ${\rm Sp} (l+3k)$$(k < l)$. It implies that every compact simple Lie group ${\rm Sp} (n)$ for $n= l+3k>4$ admits at least $2[\tfrac{1}{4} (n-1)]$ non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics.
LA - eng
KW - Einstein metric; non-naturally reductive metric; compact Lie group; symplectic group
UR - http://eudml.org/doc/298312
ER -
References
top- Arvanitoyeorgos, A., Dzhepko, V. V., Nikonorov, Y. G., 10.4153/CJM-2009-056-2, Can. J. Math. 61 (2009), 1201-1213. (2009) Zbl1183.53037MR2588419DOI10.4153/CJM-2009-056-2
- Arvanitoyeorgos, A., Mori, K., Sakane, Y., 10.1007/s10711-011-9681-1, Geom. Dedicate 160 (2012), 261-285. (2012) Zbl1253.53043MR2970054DOI10.1007/s10711-011-9681-1
- Arvanitoyeorgos, A., Sakane, Y., Statha, M., 10.1142/9789814719780_0001, Current Developments in Differential Geometry and its Related Fields World Scientific, Hackensack (2016), 1-22. (2016) Zbl1333.53053MR3494871DOI10.1142/9789814719780_0001
- Besse, A. L., 10.1007/978-3-540-74311-8, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1987). (1987) Zbl0613.53001MR0867684DOI10.1007/978-3-540-74311-8
- Chen, H., Chen, Z., Deng, S., 10.1016/j.geomphys.2017.09.011, J. Geom. Phys. 124 (2018), 268-285. (2018) Zbl1386.53053MR3754514DOI10.1016/j.geomphys.2017.09.011
- Chen, H., Chen, Z., Deng, S., 10.1007/s00229-017-0954-3, Manuscr. Math. 156 (2018), 127-136. (2018) Zbl1390.53040MR3783569DOI10.1007/s00229-017-0954-3
- Chen, Z., Chen, H., 10.1007/s11464-020-0818-0, Front. Math. China 15 (2020), 47-55. (2020) Zbl1447.53045MR4074344DOI10.1007/s11464-020-0818-0
- Chen, Z., Liang, K., 10.1007/s10455-014-9413-5, Ann. Global Anal. Geom. 46 (2014), 103-115. (2014) Zbl1301.53042MR3239276DOI10.1007/s10455-014-9413-5
- Chrysikos, I., Sakane, Y., 10.1016/j.geomphys.2017.01.030, J. Geom. Phys. 116 (2017), 152-186. (2017) Zbl1390.53041MR3623653DOI10.1016/j.geomphys.2017.01.030
- D'Atri, J. E., Ziller, W., 10.1090/memo/0215, Mem. Am. Math. Soc. 215 (1979), 72 pages. (1979) Zbl0404.53044MR0519928DOI10.1090/memo/0215
- Mori, K., Invariant Einstein Metrics on That Are Not Naturally Reductive: Master Thesis, Osaka University, Osaka (1994). English Translation: Osaka University RPM 96010 (preprint series), 1996 Japanese.
- Park, J.-S., Sakane, Y., 10.3836/tjm/1270042398, Tokyo J. Math. 20 (1997), 51-61. (1997) Zbl0884.53039MR1451858DOI10.3836/tjm/1270042398
- Wang, M., 10.4310/SDG.2001.v6.n1.a11, Surveys in Differential Geometry: Essays on Einstein Manifolds. Surv. Differ. Geom. VI International Press, Boston (1999), 287-325. (1999) Zbl1003.53037MR1798614DOI10.4310/SDG.2001.v6.n1.a11
- Wang, M., Einstein metrics from symmetry and bundle constructions: A sequel, Differential Geometry: Under the Influence of S.-S. Chern Advanced Lectures in Mathematics 22. Higher Education Press/International Press, Somerville (2012), 253-309. (2012) Zbl1262.53044MR3076055
- Wang, M., Ziller, W., 10.1007/BF01388738, Invent. Math. 84 (1986), 177-194. (1986) Zbl0596.53040MR0830044DOI10.1007/BF01388738
- Yan, Z., Deng, S., 10.1090/tran/7025, Trans. Am. Math. Soc. 369 (2017), 8587-8605. (2017) Zbl1433.53079MR3710636DOI10.1090/tran/7025
- Zhang, S., Chen, H., Deng, S., 10.1007/s10473-021-0315-x, Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 887-898. (2021) MR4245438DOI10.1007/s10473-021-0315-x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.