On the symmetric algebra of certain first syzygy modules

Gaetana Restuccia; Zhongming Tang; Rosanna Utano

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 391-409
  • ISSN: 0011-4642

Abstract

top
Let ( R , 𝔪 ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ( x 1 , ... , x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 , ... , x n ] . Assume that n 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R ( Syz 1 ( 𝔪 ) ) of the first syzygy module Syz 1 ( 𝔪 ) of 𝔪 . When the minimal generators of I are all of degree 2, the dimension of Sym R ( Syz 1 ( 𝔪 ) ) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.

How to cite

top

Restuccia, Gaetana, Tang, Zhongming, and Utano, Rosanna. "On the symmetric algebra of certain first syzygy modules." Czechoslovak Mathematical Journal 72.2 (2022): 391-409. <http://eudml.org/doc/298317>.

@article{Restuccia2022,
abstract = {Let $(R,\mathfrak \{m\})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\ge 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra $\{\rm Sym\}_R(\{\rm Syz\}_1(\mathfrak \{m\}))$ of the first syzygy module $\{\rm Syz\}_1(\mathfrak \{m\})$ of $\mathfrak \{m\}$. When the minimal generators of $I$ are all of degree 2, the dimension of $\{\rm Sym\}_R(\{\rm Syz\}_1(\mathfrak \{m\}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.},
author = {Restuccia, Gaetana, Tang, Zhongming, Utano, Rosanna},
journal = {Czechoslovak Mathematical Journal},
keywords = {symmetric algebra; syzygy; dimension; depth},
language = {eng},
number = {2},
pages = {391-409},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the symmetric algebra of certain first syzygy modules},
url = {http://eudml.org/doc/298317},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Restuccia, Gaetana
AU - Tang, Zhongming
AU - Utano, Rosanna
TI - On the symmetric algebra of certain first syzygy modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 391
EP - 409
AB - Let $(R,\mathfrak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\ge 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\mathfrak {m}))$ of the first syzygy module ${\rm Syz}_1(\mathfrak {m})$ of $\mathfrak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\mathfrak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
LA - eng
KW - symmetric algebra; syzygy; dimension; depth
UR - http://eudml.org/doc/298317
ER -

References

top
  1. Eisenbud, D., 10.1007/978-1-4612-5350-1, Graduate Texts in Mathematics 150. Springer, New York (1995). (1995) Zbl0819.13001MR1322960DOI10.1007/978-1-4612-5350-1
  2. Eliahou, S., Kervaire, M., 10.1016/0021-8693(90)90237-I, J. Algebra 129 (1990), 1-25. (1990) Zbl0701.13006MR1037391DOI10.1016/0021-8693(90)90237-I
  3. Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
  4. Herzog, J., Restuccia, G., Rinaldo, G., On the depth and regularity of the symmetric algebra, Beitr. Algebra Geom. 47 (2006), 29-51. (2006) Zbl1101.13039MR2245654
  5. Herzog, J., Restuccia, G., Tang, Z., 10.1007/s002290170022, Manuscr. Math. 104 (2001), 479-501. (2001) Zbl1058.13011MR1836109DOI10.1007/s002290170022
  6. Herzog, J., Tang, Z., Zarzuela, S., 10.1007/s00229-003-0420-2, Manuscr. Math. 112 (2003), 489-509. (2003) Zbl1088.13518MR2064656DOI10.1007/s00229-003-0420-2
  7. Restuccia, G., Tang, Z., Utano, R., 10.1080/00927872.2014.999929, Commun. Algebra 44 (2016), 1110-1118. (2016) Zbl1337.13010MR3463132DOI10.1080/00927872.2014.999929
  8. Restuccia, G., Tang, Z., Utano, R., 10.1007/s10231-018-0756-6, Ann. Mat. Pura Appl. 197 (2018), 1923-1935. (2018) Zbl1410.13011MR3855419DOI10.1007/s10231-018-0756-6
  9. Tang, Z., 10.1016/j.jalgebra.2004.08.027, J. Algebra 282 (2004), 831-842. (2004) Zbl1147.13304MR2101086DOI10.1016/j.jalgebra.2004.08.027
  10. Villarreal, R. H., 10.1201/9780824746193, Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904DOI10.1201/9780824746193

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.