On the symmetric algebra of certain first syzygy modules
Gaetana Restuccia; Zhongming Tang; Rosanna Utano
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 391-409
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRestuccia, Gaetana, Tang, Zhongming, and Utano, Rosanna. "On the symmetric algebra of certain first syzygy modules." Czechoslovak Mathematical Journal 72.2 (2022): 391-409. <http://eudml.org/doc/298317>.
@article{Restuccia2022,
abstract = {Let $(R,\mathfrak \{m\})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\ge 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra $\{\rm Sym\}_R(\{\rm Syz\}_1(\mathfrak \{m\}))$ of the first syzygy module $\{\rm Syz\}_1(\mathfrak \{m\})$ of $\mathfrak \{m\}$. When the minimal generators of $I$ are all of degree 2, the dimension of $\{\rm Sym\}_R(\{\rm Syz\}_1(\mathfrak \{m\}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.},
author = {Restuccia, Gaetana, Tang, Zhongming, Utano, Rosanna},
journal = {Czechoslovak Mathematical Journal},
keywords = {symmetric algebra; syzygy; dimension; depth},
language = {eng},
number = {2},
pages = {391-409},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the symmetric algebra of certain first syzygy modules},
url = {http://eudml.org/doc/298317},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Restuccia, Gaetana
AU - Tang, Zhongming
AU - Utano, Rosanna
TI - On the symmetric algebra of certain first syzygy modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 391
EP - 409
AB - Let $(R,\mathfrak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\ge 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\mathfrak {m}))$ of the first syzygy module ${\rm Syz}_1(\mathfrak {m})$ of $\mathfrak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\mathfrak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
LA - eng
KW - symmetric algebra; syzygy; dimension; depth
UR - http://eudml.org/doc/298317
ER -
References
top- Eisenbud, D., 10.1007/978-1-4612-5350-1, Graduate Texts in Mathematics 150. Springer, New York (1995). (1995) Zbl0819.13001MR1322960DOI10.1007/978-1-4612-5350-1
- Eliahou, S., Kervaire, M., 10.1016/0021-8693(90)90237-I, J. Algebra 129 (1990), 1-25. (1990) Zbl0701.13006MR1037391DOI10.1016/0021-8693(90)90237-I
- Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
- Herzog, J., Restuccia, G., Rinaldo, G., On the depth and regularity of the symmetric algebra, Beitr. Algebra Geom. 47 (2006), 29-51. (2006) Zbl1101.13039MR2245654
- Herzog, J., Restuccia, G., Tang, Z., 10.1007/s002290170022, Manuscr. Math. 104 (2001), 479-501. (2001) Zbl1058.13011MR1836109DOI10.1007/s002290170022
- Herzog, J., Tang, Z., Zarzuela, S., 10.1007/s00229-003-0420-2, Manuscr. Math. 112 (2003), 489-509. (2003) Zbl1088.13518MR2064656DOI10.1007/s00229-003-0420-2
- Restuccia, G., Tang, Z., Utano, R., 10.1080/00927872.2014.999929, Commun. Algebra 44 (2016), 1110-1118. (2016) Zbl1337.13010MR3463132DOI10.1080/00927872.2014.999929
- Restuccia, G., Tang, Z., Utano, R., 10.1007/s10231-018-0756-6, Ann. Mat. Pura Appl. 197 (2018), 1923-1935. (2018) Zbl1410.13011MR3855419DOI10.1007/s10231-018-0756-6
- Tang, Z., 10.1016/j.jalgebra.2004.08.027, J. Algebra 282 (2004), 831-842. (2004) Zbl1147.13304MR2101086DOI10.1016/j.jalgebra.2004.08.027
- Villarreal, R. H., 10.1201/9780824746193, Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904DOI10.1201/9780824746193
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.