Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
R.N. Rath; K.C. Panda; S.K. Rath
Archivum Mathematicum (2022)
- Volume: 058, Issue: 2, page 65-84
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRath, R.N., Panda, K.C., and Rath, S.K.. "Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator." Archivum Mathematicum 058.2 (2022): 65-84. <http://eudml.org/doc/298324>.
@article{Rath2022,
abstract = {In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation \[ \big (y(t)- \sum \_\{i=1\}^k p\_i(t) y(r\_i(t))\big )^\{(n)\}+ v(t)G( y(g(t)))-u(t)H(y(h(t))) = f(t) \]
oscillates or tends to zero as $t\rightarrow \infty $, where, $n \ge 1$ is any positive integer, $p_i$, $r_i\in C^\{(n)\}([0,\infty ),\mathbb \{R\})$ and $p_i$ are bounded for each $i=1,2,\dots ,k$. Further, $f\in C([0, \infty ), \mathbb \{R\})$, $g$, $h$, $v$, $u \in C([0, \infty ), [0, \infty ))$, $G$ and $H \in C(\mathbb \{R\},\mathbb \{R\})$. The functional delays $r_i(t)\le t$, $g(t)\le t$ and $h(t)\le t$ and all of them approach $\infty $ as $t\rightarrow \infty $. The results hold when $u\equiv 0$ and $f(t)\equiv 0$. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.},
author = {Rath, R.N., Panda, K.C., Rath, S.K.},
journal = {Archivum Mathematicum},
keywords = {oscillation; non-oscillation; neutral equation; asymptotic behaviour},
language = {eng},
number = {2},
pages = {65-84},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator},
url = {http://eudml.org/doc/298324},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Rath, R.N.
AU - Panda, K.C.
AU - Rath, S.K.
TI - Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 2
SP - 65
EP - 84
AB - In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation \[ \big (y(t)- \sum _{i=1}^k p_i(t) y(r_i(t))\big )^{(n)}+ v(t)G( y(g(t)))-u(t)H(y(h(t))) = f(t) \]
oscillates or tends to zero as $t\rightarrow \infty $, where, $n \ge 1$ is any positive integer, $p_i$, $r_i\in C^{(n)}([0,\infty ),\mathbb {R})$ and $p_i$ are bounded for each $i=1,2,\dots ,k$. Further, $f\in C([0, \infty ), \mathbb {R})$, $g$, $h$, $v$, $u \in C([0, \infty ), [0, \infty ))$, $G$ and $H \in C(\mathbb {R},\mathbb {R})$. The functional delays $r_i(t)\le t$, $g(t)\le t$ and $h(t)\le t$ and all of them approach $\infty $ as $t\rightarrow \infty $. The results hold when $u\equiv 0$ and $f(t)\equiv 0$. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.
LA - eng
KW - oscillation; non-oscillation; neutral equation; asymptotic behaviour
UR - http://eudml.org/doc/298324
ER -
References
top- Dix, J.G., Misra, N., Padhy, L.N., Rath, R.N., 10.14232/ejqtde.2008.1.19, Electron. J. Qual. Theory Differ. Equ. 19 (2008), 1–10. (2008) MR2407546DOI10.14232/ejqtde.2008.1.19
- Gyori, I., Ladas, G., Oscillation Theory of Delay-Differential Equations with Applications, Clarendon Press, Oxford, 1991. (1991) MR1168471
- Hilderbrandt, T.H., Introduction to the Theory of Integration, Academic Press, New York, 1963. (1963) MR0154957
- Karpuz, B., Rath, R.N., Padhy, L.N., On oscillation and asymptotic behaviour of a higher order neutral differential equation with positive and negative coefficients, Electron. J. Differential Equations 2008 (113) (2008), 1–15, MR2430910. (2008) MR2430910
- Ladde, G.S., Lakshmikantham, V., Zhang, B.G., Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker Inc., New York, 1987. (1987) Zbl0832.34071MR1017244
- Parhi, N., Rath, R.N., On oscillation criteria for a forced neutral differential equation, Bull. Inst. Math. Acad. Sinica 28 (2000), 59–70. (2000) MR1750329
- Parhi, N., Rath, R.N., 10.1007/BF02829600, Proceedings of Indian Acad. Sci. Math. Sci., vol. 111, 2001, pp. 337–350. (2001) Zbl0995.34058MR1851095DOI10.1007/BF02829600
- Parhi, N., Rath, R.N., 10.1006/jmaa.2000.7315, J. Math. Anal. Appl. 256 (2001), 525–541. (2001) Zbl0982.34057MR1821755DOI10.1006/jmaa.2000.7315
- Parhi, N., Rath, R.N., 10.1007/s10587-004-0805-8, Czechoslovak Math. J. 53 (2003), 805–825, MR2018832(2005g:34163). (2003) MR2018832DOI10.1007/s10587-004-0805-8
- Parhi, N., Rath, R.N., 10.4064/ap81-2-1, Ann. Polon. Math. 81 (20033), 101–110. (2003) Zbl1037.34058MR1976190DOI10.4064/ap81-2-1
- Parhi, N., Rath, R.N., Oscillation of solutions of a class of first order neutral differential equations, J. Indian Math. Soc. 71 (2004), 175–188. (2004) MR2290627
- Royden, H.L., Real Analysis, 3rd ed., MacMilan Publ. Co., New York, 1988. (1988) Zbl0704.26006MR1013117
- Sahiner, Y., Zafer, A., 10.1023/A:1013763409361, Czechoslovak Math. J. 51 (2001), 185–195. (2001) MR1814644DOI10.1023/A:1013763409361
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.