Bicrossed products of generalized Taft algebra and group algebras

Dingguo Wang; Xiangdong Cheng; Daowei Lu

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 801-816
  • ISSN: 0011-4642

Abstract

top
Let G be a group generated by a set of finite order elements. We prove that any bicrossed product H m , d ( q ) k [ G ] between the generalized Taft algebra H m , d ( q ) and group algebra k [ G ] is actually the smash product H m , d ( q ) k [ G ] . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of G . As an application, the classification of H m , d ( q ) k [ C n 1 × C n 2 ] is completely presented by generators and relations, where C n denotes the n -cyclic group.

How to cite

top

Wang, Dingguo, Cheng, Xiangdong, and Lu, Daowei. "Bicrossed products of generalized Taft algebra and group algebras." Czechoslovak Mathematical Journal 72.3 (2022): 801-816. <http://eudml.org/doc/298349>.

@article{Wang2022,
abstract = {Let $G$ be a group generated by a set of finite order elements. We prove that any bicrossed product $H_\{m,d\}(q)\bowtie k[G]$ between the generalized Taft algebra $H_\{m,d\}(q)$ and group algebra $k[G]$ is actually the smash product $H_\{m,d\}(q)\sharp k[G]$. Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of $G$. As an application, the classification of $H_\{m,d\}(q)\bowtie k[ C_\{n_1\}\times C_\{n_2\}]$ is completely presented by generators and relations, where $C_n$ denotes the $n$-cyclic group.},
author = {Wang, Dingguo, Cheng, Xiangdong, Lu, Daowei},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Taft algebra; factorization problem; bicrossed product},
language = {eng},
number = {3},
pages = {801-816},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bicrossed products of generalized Taft algebra and group algebras},
url = {http://eudml.org/doc/298349},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Wang, Dingguo
AU - Cheng, Xiangdong
AU - Lu, Daowei
TI - Bicrossed products of generalized Taft algebra and group algebras
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 801
EP - 816
AB - Let $G$ be a group generated by a set of finite order elements. We prove that any bicrossed product $H_{m,d}(q)\bowtie k[G]$ between the generalized Taft algebra $H_{m,d}(q)$ and group algebra $k[G]$ is actually the smash product $H_{m,d}(q)\sharp k[G]$. Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of $G$. As an application, the classification of $H_{m,d}(q)\bowtie k[ C_{n_1}\times C_{n_2}]$ is completely presented by generators and relations, where $C_n$ denotes the $n$-cyclic group.
LA - eng
KW - generalized Taft algebra; factorization problem; bicrossed product
UR - http://eudml.org/doc/298349
ER -

References

top
  1. Agore, A. L., 10.1016/j.jpaa.2017.05.014, J. Pure Appl. Algebra 222 (2018), 914-930. (2018) Zbl1416.16033MR3720860DOI10.1016/j.jpaa.2017.05.014
  2. Agore, A. L., 10.3842/SIGMA.2018.027, SIGMA, Symmetry Integrability Geom. Methods Appl. 14 (2018), Article ID 027, 14 pages. (2018) Zbl1414.16027MR3778923DOI10.3842/SIGMA.2018.027
  3. Agore, A. L., Bontea, C. G., Militaru, G., 10.1007/s10468-012-9396-5, Algebr. Represent. Theory 17 (2014), 227-264. (2014) Zbl1351.16031MR3160722DOI10.1007/s10468-012-9396-5
  4. Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G., 10.1007/s10468-009-9145-6, Algebr. Represent. Theory 12 (2009), 481-488. (2009) Zbl1187.20023MR2501197DOI10.1007/s10468-009-9145-6
  5. Agore, A. L., Militaru, G., 10.1016/j.jalgebra.2013.06.012, J. Algebra 391 (2013), 193-208. (2013) Zbl1293.16026MR3081628DOI10.1016/j.jalgebra.2013.06.012
  6. Agore, A. L., Năstăsescu, L., 10.1007/s00013-019-01328-3, Arch. Math. 113 (2019), 21-36. (2019) Zbl1447.16025MR3960780DOI10.1007/s00013-019-01328-3
  7. Aguiar, M., Andruskiewitsch, N., 10.1090/conm/376, Algebraic Structures and Their Representations Contemporary Mathematics 376 (2005), 127-173. (2005) Zbl1100.16032MR2147019DOI10.1090/conm/376
  8. Bontea, C. G., 10.1007/s10587-014-0109-6, Czech. Math. J. 64 (2014), 419-431. (2014) Zbl1322.16022MR3277744DOI10.1007/s10587-014-0109-6
  9. Brzeziński, T., 10.1081/AGB-100001537, Commun. Algebra 29 (2001), 737-748. (2001) Zbl1003.16024MR1841995DOI10.1081/AGB-100001537
  10. Caenepeel, S., Ion, B., Militaru, G., Zhu, S., 10.1023/A:1009917210863, Algebr. Represent. Theory 3 (2000), 19-42. (2000) Zbl0957.16027MR1755802DOI10.1023/A:1009917210863
  11. Chen, X.-W., Huang, H.-L., Ye, Y., Zhang, P., 10.1016/j.jalgebra.2003.12.019, J. Algebra 275 (2004), 212-232. (2004) Zbl1071.16030MR2047446DOI10.1016/j.jalgebra.2003.12.019
  12. Cibils, C., 10.1007/BF02096879, Commun. Math. Phys. 157 (1993), 459-477. (1993) Zbl0806.16039MR1243707DOI10.1007/BF02096879
  13. Huang, H., Chen, H., Zhang, P., Generalized Taft algebras, Algebra Colloq. 11 (2004), 313-320. (2004) Zbl1079.16026MR2081190
  14. Keilberg, M., 10.1007/s10468-015-9540-0, Algebr. Represent. Theory 18 (2015), 1267-1297. (2015) Zbl1354.16042MR3422470DOI10.1007/s10468-015-9540-0
  15. Keilberg, M., 10.1080/00927872.2018.1461883, Commun. Algebra 46 (2018), 5146-5178. (2018) Zbl1414.16028MR3923748DOI10.1080/00927872.2018.1461883
  16. Lu, D., Ning, Y., Wang, D., 10.21136/CMJ.2020.0079-19, Czech. Math. J. 70 (2020), 959-977. (2020) Zbl07285973MR4181790DOI10.21136/CMJ.2020.0079-19
  17. Maillet, E., 10.24033/bsmf.617, Bull. Soc. Math. Fr. 28 (1900), 7-16 French 9999JFM99999 31.0144.02. (1900) MR1504357DOI10.24033/bsmf.617
  18. Majid, S., 10.1016/0021-8693(90)90099-A, J. Algebra 130 (1990), 17-64. (1990) Zbl0694.16008MR1045735DOI10.1016/0021-8693(90)90099-A
  19. Majid, S., 10.1017/CBO9780511613104, Cambridge University Press, Cambridge (1995). (1995) Zbl0857.17009MR1381692DOI10.1017/CBO9780511613104
  20. Michor, P. W., Knit product of graded Lie algebras and groups, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175. (1990) Zbl0954.17508MR1061798
  21. Radford, D. E., 10.1090/S0002-9939-1975-0396652-0, Proc. Am. Math. Soc. 53 (1975), 9-15. (1975) Zbl0324.16009MR0396652DOI10.1090/S0002-9939-1975-0396652-0
  22. Taft, E. J., 10.1073/pnas.68.11.2631, Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. (1971) Zbl0222.16012MR0286868DOI10.1073/pnas.68.11.2631
  23. Takeuchi, M., 10.1080/00927878108822621, Commun. Algebra 9 (1981), 841-882. (1981) Zbl0456.16011MR0611561DOI10.1080/00927878108822621
  24. Zappa, G., Sulla costruzione dei gruppi prodotto di dati sottogruppi permutabili tra loro, Atti 2. Congr. Un. Mat. Ital., Bologna 1942 (1942), 119-125 Italian. (1942) Zbl0026.29104MR0019090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.