The bicrossed products of and
Daowei Lu; Yan Ning; Dingguo Wang
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 959-977
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLu, Daowei, Ning, Yan, and Wang, Dingguo. "The bicrossed products of $H_4$ and $H_8$." Czechoslovak Mathematical Journal 70.4 (2020): 959-977. <http://eudml.org/doc/297368>.
@article{Lu2020,
abstract = {Let $H_4$ and $H_8$ be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_\{32,1\},H_\{32,2\},H_\{32,3\}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.},
author = {Lu, Daowei, Ning, Yan, Wang, Dingguo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem},
language = {eng},
number = {4},
pages = {959-977},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The bicrossed products of $H_4$ and $H_8$},
url = {http://eudml.org/doc/297368},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Lu, Daowei
AU - Ning, Yan
AU - Wang, Dingguo
TI - The bicrossed products of $H_4$ and $H_8$
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 959
EP - 977
AB - Let $H_4$ and $H_8$ be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.
LA - eng
KW - Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem
UR - http://eudml.org/doc/297368
ER -
References
top- Agore, A. L., 10.1016/j.jpaa.2017.05.014, J. Pure Appl. Algebra 222 (2018), 914-930. (2018) Zbl1416.16033MR3720860DOI10.1016/j.jpaa.2017.05.014
- Agore, A. L., 10.3842/SIGMA.2018.027, SIGMA, Symmetry, Integrability Geom. Methods Appl. 14 (2018), Article ID 027. (2018) Zbl1414.16027MR3778923DOI10.3842/SIGMA.2018.027
- Agore, A. L., Bontea, C. G., Militaru, G., 10.1007/s10468-012-9396-5, Algebr. Represent. Theory 17 (2014), 227-264. (2014) Zbl1351.16031MR3160722DOI10.1007/s10468-012-9396-5
- Agore, A. L., Ion, B., Militaru, G., 10.1007/s10468-009-9145-6, Algebr. Represent. Theory 12 (2009), 481-488. (2009) Zbl1187.20023MR2501197DOI10.1007/s10468-009-9145-6
- Bontea, C. G., 10.1007/s10587-014-0109-6, Czech. Math. J. 64 (2014), 419-431. (2014) Zbl1322.16022MR3277744DOI10.1007/s10587-014-0109-6
- Chen, Q., Wang, D.-G., 10.1080/00927872.2013.876036, Commun. Algebra 43 (2015), 1698-1722. (2015) Zbl1327.16017MR3314638DOI10.1080/00927872.2013.876036
- Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155, Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
- Kats, G. I., Palyutkin, V. G., Finite ring groups, Trans. Mosc. Math. Soc. 15 (1966), 251-294 translation from Tr. Mosk. Mat. O.-va 15 1966 224-261. (1966) Zbl0218.43005MR0208401
- Keilberg, M., 10.1007/s10468-015-9540-0, Algebr. Represent. Theory 18 (2015), 1267-1297. (2015) Zbl1354.16042MR3422470DOI10.1007/s10468-015-9540-0
- Keilberg, M., 10.1080/00927872.2018.1461883, Commun. Algebra 46 (2018), 5146-5178. (2018) Zbl1414.16028MR3923748DOI10.1080/00927872.2018.1461883
- Maillet, E., 10.24033/bsmf.617, Bull. Soc. Math. Fr. 28 (1900), 7-16 French 9999JFM99999 31.0144.02. (1900) MR1504357DOI10.24033/bsmf.617
- Majid, S., 10.1016/0021-8693(90)90099-A, J. Algebra 130 (1990), 17-64. (1990) Zbl0694.16008MR1045735DOI10.1016/0021-8693(90)90099-A
- Masuoka, A., 10.1007/BF02762089, Isr. J. Math. 92 (1995), 361-373. (1995) Zbl0839.16036MR1357764DOI10.1007/BF02762089
- Panov, A. N., 10.1023/A:1026115004357, Math. Notes 74 (2003), 401-410 translation from Mat. Zametki 74 2003 425-434. (2003) Zbl1071.16035MR2022506DOI10.1023/A:1026115004357
- Pansera, D., 10.1090/conm/727, Rings, Modules and Codes Contemporary Mathematics 727, American Mathematical Society, Providence (2019), 303-316. (2019) Zbl07120022MR3938158DOI10.1090/conm/727
- Takeuchi, M., 10.1080/00927878108822621, Commun. Algebra 9 (1981), 841-882. (1981) Zbl0456.16011MR0611561DOI10.1080/00927878108822621
- Wang, D.-G., Zhang, J. J., Zhuang, G., 10.1016/j.jalgebra.2013.03.032, J. Algebra 388 (2013), 219-247. (2013) Zbl1355.16033MR3061686DOI10.1016/j.jalgebra.2013.03.032
- Wang, D.-G., Zhang, J. J., Zhuang, G., 10.1090/S0002-9947-2015-06219-9, Trans. Am. Math. Soc. 367 (2015), 5597-5632. (2015) Zbl1330.16022MR3347184DOI10.1090/S0002-9947-2015-06219-9
- Wang, D.-G., Zhang, J. J., Zhuang, G., 10.1016/j.jalgebra.2016.07.003, J. Algebra 464 (2016), 36-96. (2016) Zbl1402.16019MR3533424DOI10.1016/j.jalgebra.2016.07.003
- Xu, Y., Huang, H.-L., Wang, D.-G., 10.1016/j.jpaa.2018.06.017, J. Pure Appl. Algebra 223 (2019), 1531-1547. (2019) Zbl06994941MR3906516DOI10.1016/j.jpaa.2018.06.017
- Zappa, G., Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti 2. Congr. Un. Mat. Ital., Bologna 1940 (1942), 119-125 Italian. (1942) Zbl0026.29104MR0019090
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.