The bicrossed products of H 4 and H 8

Daowei Lu; Yan Ning; Dingguo Wang

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 959-977
  • ISSN: 0011-4642

Abstract

top
Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

How to cite

top

Lu, Daowei, Ning, Yan, and Wang, Dingguo. "The bicrossed products of $H_4$ and $H_8$." Czechoslovak Mathematical Journal 70.4 (2020): 959-977. <http://eudml.org/doc/297368>.

@article{Lu2020,
abstract = {Let $H_4$ and $H_8$ be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_\{32,1\},H_\{32,2\},H_\{32,3\}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.},
author = {Lu, Daowei, Ning, Yan, Wang, Dingguo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem},
language = {eng},
number = {4},
pages = {959-977},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The bicrossed products of $H_4$ and $H_8$},
url = {http://eudml.org/doc/297368},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Lu, Daowei
AU - Ning, Yan
AU - Wang, Dingguo
TI - The bicrossed products of $H_4$ and $H_8$
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 959
EP - 977
AB - Let $H_4$ and $H_8$ be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.
LA - eng
KW - Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem
UR - http://eudml.org/doc/297368
ER -

References

top
  1. Agore, A. L., 10.1016/j.jpaa.2017.05.014, J. Pure Appl. Algebra 222 (2018), 914-930. (2018) Zbl1416.16033MR3720860DOI10.1016/j.jpaa.2017.05.014
  2. Agore, A. L., 10.3842/SIGMA.2018.027, SIGMA, Symmetry, Integrability Geom. Methods Appl. 14 (2018), Article ID 027. (2018) Zbl1414.16027MR3778923DOI10.3842/SIGMA.2018.027
  3. Agore, A. L., Bontea, C. G., Militaru, G., 10.1007/s10468-012-9396-5, Algebr. Represent. Theory 17 (2014), 227-264. (2014) Zbl1351.16031MR3160722DOI10.1007/s10468-012-9396-5
  4. Agore, A. L., Ion, B., Militaru, G., 10.1007/s10468-009-9145-6, Algebr. Represent. Theory 12 (2009), 481-488. (2009) Zbl1187.20023MR2501197DOI10.1007/s10468-009-9145-6
  5. Bontea, C. G., 10.1007/s10587-014-0109-6, Czech. Math. J. 64 (2014), 419-431. (2014) Zbl1322.16022MR3277744DOI10.1007/s10587-014-0109-6
  6. Chen, Q., Wang, D.-G., 10.1080/00927872.2013.876036, Commun. Algebra 43 (2015), 1698-1722. (2015) Zbl1327.16017MR3314638DOI10.1080/00927872.2013.876036
  7. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155, Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  8. Kats, G. I., Palyutkin, V. G., Finite ring groups, Trans. Mosc. Math. Soc. 15 (1966), 251-294 translation from Tr. Mosk. Mat. O.-va 15 1966 224-261. (1966) Zbl0218.43005MR0208401
  9. Keilberg, M., 10.1007/s10468-015-9540-0, Algebr. Represent. Theory 18 (2015), 1267-1297. (2015) Zbl1354.16042MR3422470DOI10.1007/s10468-015-9540-0
  10. Keilberg, M., 10.1080/00927872.2018.1461883, Commun. Algebra 46 (2018), 5146-5178. (2018) Zbl1414.16028MR3923748DOI10.1080/00927872.2018.1461883
  11. Maillet, E., 10.24033/bsmf.617, Bull. Soc. Math. Fr. 28 (1900), 7-16 French 9999JFM99999 31.0144.02. (1900) MR1504357DOI10.24033/bsmf.617
  12. Majid, S., 10.1016/0021-8693(90)90099-A, J. Algebra 130 (1990), 17-64. (1990) Zbl0694.16008MR1045735DOI10.1016/0021-8693(90)90099-A
  13. Masuoka, A., 10.1007/BF02762089, Isr. J. Math. 92 (1995), 361-373. (1995) Zbl0839.16036MR1357764DOI10.1007/BF02762089
  14. Panov, A. N., 10.1023/A:1026115004357, Math. Notes 74 (2003), 401-410 translation from Mat. Zametki 74 2003 425-434. (2003) Zbl1071.16035MR2022506DOI10.1023/A:1026115004357
  15. Pansera, D., 10.1090/conm/727, Rings, Modules and Codes Contemporary Mathematics 727, American Mathematical Society, Providence (2019), 303-316. (2019) Zbl07120022MR3938158DOI10.1090/conm/727
  16. Takeuchi, M., 10.1080/00927878108822621, Commun. Algebra 9 (1981), 841-882. (1981) Zbl0456.16011MR0611561DOI10.1080/00927878108822621
  17. Wang, D.-G., Zhang, J. J., Zhuang, G., 10.1016/j.jalgebra.2013.03.032, J. Algebra 388 (2013), 219-247. (2013) Zbl1355.16033MR3061686DOI10.1016/j.jalgebra.2013.03.032
  18. Wang, D.-G., Zhang, J. J., Zhuang, G., 10.1090/S0002-9947-2015-06219-9, Trans. Am. Math. Soc. 367 (2015), 5597-5632. (2015) Zbl1330.16022MR3347184DOI10.1090/S0002-9947-2015-06219-9
  19. Wang, D.-G., Zhang, J. J., Zhuang, G., 10.1016/j.jalgebra.2016.07.003, J. Algebra 464 (2016), 36-96. (2016) Zbl1402.16019MR3533424DOI10.1016/j.jalgebra.2016.07.003
  20. Xu, Y., Huang, H.-L., Wang, D.-G., 10.1016/j.jpaa.2018.06.017, J. Pure Appl. Algebra 223 (2019), 1531-1547. (2019) Zbl06994941MR3906516DOI10.1016/j.jpaa.2018.06.017
  21. Zappa, G., Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti 2. Congr. Un. Mat. Ital., Bologna 1940 (1942), 119-125 Italian. (1942) Zbl0026.29104MR0019090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.