A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form

Henrique Fernandes de Lima

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 3, page 169-175
  • ISSN: 0044-8753

Abstract

top
We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].

How to cite

top

de Lima, Henrique Fernandes. "A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form." Archivum Mathematicum 058.3 (2022): 169-175. <http://eudml.org/doc/298350>.

@article{deLima2022,
abstract = {We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].},
author = {de Lima, Henrique Fernandes},
journal = {Archivum Mathematicum},
keywords = {Lorentzian space forms; complete spacelike hypersurfaces; polynomial volume growth; support functions},
language = {eng},
number = {3},
pages = {169-175},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form},
url = {http://eudml.org/doc/298350},
volume = {058},
year = {2022},
}

TY - JOUR
AU - de Lima, Henrique Fernandes
TI - A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 3
SP - 169
EP - 175
AB - We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].
LA - eng
KW - Lorentzian space forms; complete spacelike hypersurfaces; polynomial volume growth; support functions
UR - http://eudml.org/doc/298350
ER -

References

top
  1. Alías, L.J., 10.3836/tjm/1255958315, Tokyo J. Math. 24 (2001), 107–112. (2001) MR1844421DOI10.3836/tjm/1255958315
  2. Alías, L.J., Brasil Jr., A., Perdomo, O., 10.1007/s12220-008-9029-8, J. Geom. Anal. 18 (2008), 687–703. (2008) MR2420759DOI10.1007/s12220-008-9029-8
  3. Alías, L.J., Caminha, A., do Nascimento, F.Y., A maximum principle related to volume growth and applications, Ann. Mat. Pura Appl. 200 (2021), 1637–1650. (2021) MR4278219
  4. Alías, L.J., Pastor, J.A., 10.1016/S0393-0440(98)00014-X, J. Geom. Phys. 28 (1998), 85–93. (1998) MR1653134DOI10.1016/S0393-0440(98)00014-X
  5. Aquino, C.P., de Lima, H.F., 10.1016/j.jmaa.2011.08.046, J. Math. Anal. Appl. 386 (2012), 862–869. (2012) MR2834793DOI10.1016/j.jmaa.2011.08.046
  6. Aquino, C.P., de Lima, H.F., 10.4171/CMH/329, Comment. Math. Helv. 89 (2014), 617–629. (2014) MR3260844DOI10.4171/CMH/329
  7. Aquino, C.P., de Lima, H.F., 10.1007/s00208-014-1049-z, Math. Ann. 360 (2014), 555–569. (2014) MR3273637DOI10.1007/s00208-014-1049-z
  8. Aquino, C.P., de Lima, H.F., dos Santos, F.R., On the quadric CMC spacelike hypersurfaces in Lorentzian space forms, Colloq. Math. 145 (2016), 89–98. (2016) MR3514262
  9. Aquino, C.P., de Lima, H.F., Velásquez, M.A.L., 10.1007/s10711-014-0002-3, Geom. Dedicata 174 (2015), 13–23. (2015) MR3303038DOI10.1007/s10711-014-0002-3
  10. Beem, J.K., Ehrlich, P.E., Easley, K.L., Global Lorentzian Geometry, CRC Press, New York, 1996, Second Edition. (1996) MR1384756
  11. Galloway, G.J., Senovilla, J.M.M., 10.1088/0264-9381/27/15/152002, Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. (2010) MR2659235DOI10.1088/0264-9381/27/15/152002
  12. Hawking, S.W., Ellis, G.F.R., The large scale structure of spacetime, Cambridge University Press, London-New York, 1973. (1973) MR0424186
  13. Montiel, S., 10.1007/s002080050306, Math. Ann. 314 (1999), 529–553. (1999) MR1704548DOI10.1007/s002080050306
  14. O’Neill, B., Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, 1983. (1983) MR0719023
  15. Penrose, R., 10.1103/PhysRevLett.14.57, Phys. Rev. Lett. 14 (1965), 57–59. (1965) MR0172678DOI10.1103/PhysRevLett.14.57
  16. Senovilla, J.M.M., Singularity theorems in general relativity: Achievements and open questions, Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316. (2012) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.