On the quadric CMC spacelike hypersurfaces in Lorentzian space forms
Cícero P. Aquino; Henrique F. de Lima; Fábio R. dos Santos
Colloquium Mathematicae (2016)
- Volume: 145, Issue: 1, page 89-98
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topCícero P. Aquino, Henrique F. de Lima, and Fábio R. dos Santos. "On the quadric CMC spacelike hypersurfaces in Lorentzian space forms." Colloquium Mathematicae 145.1 (2016): 89-98. <http://eudml.org/doc/286616>.
@article{CíceroP2016,
abstract = {We deal with complete spacelike hypersurfaces immersed with constant mean curvature in a Lorentzian space form. Under the assumption that the support functions with respect to a fixed nonzero vector are linearly related, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of the ambient space.},
author = {Cícero P. Aquino, Henrique F. de Lima, Fábio R. dos Santos},
journal = {Colloquium Mathematicae},
keywords = {lorentzian space forms; complete spacelike hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders; constant Mean curvature; support functions},
language = {eng},
number = {1},
pages = {89-98},
title = {On the quadric CMC spacelike hypersurfaces in Lorentzian space forms},
url = {http://eudml.org/doc/286616},
volume = {145},
year = {2016},
}
TY - JOUR
AU - Cícero P. Aquino
AU - Henrique F. de Lima
AU - Fábio R. dos Santos
TI - On the quadric CMC spacelike hypersurfaces in Lorentzian space forms
JO - Colloquium Mathematicae
PY - 2016
VL - 145
IS - 1
SP - 89
EP - 98
AB - We deal with complete spacelike hypersurfaces immersed with constant mean curvature in a Lorentzian space form. Under the assumption that the support functions with respect to a fixed nonzero vector are linearly related, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of the ambient space.
LA - eng
KW - lorentzian space forms; complete spacelike hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders; constant Mean curvature; support functions
UR - http://eudml.org/doc/286616
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.