Maximum bipartite subgraphs in -free graphs
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 3, page 621-635
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLin, Jing. "Maximum bipartite subgraphs in $H$-free graphs." Czechoslovak Mathematical Journal 72.3 (2022): 621-635. <http://eudml.org/doc/298359>.
@article{Lin2022,
abstract = {Given a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. Given a fixed graph $H$ and a positive integer $m$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$, as $G$ ranges over all graphs on $m$ edges that contain no copy of $H$. In this paper we prove that $f(m,\theta _\{k,s\})\ge \tfrac\{1\}\{2\} m +\Omega (m^\{(2k+1)/(2k+2)\})$, which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write $K^\{\prime \}_\{k\}$ and $K^\{\prime \}_\{t,s\}$ for the subdivisions of $K_k$ and $K_\{t,s\}$. We show that $f(m,K^\{\prime \}_\{k\})\ge \tfrac\{1\}\{2\} m +\Omega (m^\{(5k-8)/(6k-10)\})$ and $f(m,K^\{\prime \}_\{t,s\})\ge \tfrac\{1\}\{2\} m +\Omega (m^\{(5t-1)/(6t-2)\})$, improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov (2003).},
author = {Lin, Jing},
journal = {Czechoslovak Mathematical Journal},
keywords = {bipartite subgraph; $H$-free; partition},
language = {eng},
number = {3},
pages = {621-635},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximum bipartite subgraphs in $H$-free graphs},
url = {http://eudml.org/doc/298359},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Lin, Jing
TI - Maximum bipartite subgraphs in $H$-free graphs
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 621
EP - 635
AB - Given a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. Given a fixed graph $H$ and a positive integer $m$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$, as $G$ ranges over all graphs on $m$ edges that contain no copy of $H$. In this paper we prove that $f(m,\theta _{k,s})\ge \tfrac{1}{2} m +\Omega (m^{(2k+1)/(2k+2)})$, which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write $K^{\prime }_{k}$ and $K^{\prime }_{t,s}$ for the subdivisions of $K_k$ and $K_{t,s}$. We show that $f(m,K^{\prime }_{k})\ge \tfrac{1}{2} m +\Omega (m^{(5k-8)/(6k-10)})$ and $f(m,K^{\prime }_{t,s})\ge \tfrac{1}{2} m +\Omega (m^{(5t-1)/(6t-2)})$, improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov (2003).
LA - eng
KW - bipartite subgraph; $H$-free; partition
UR - http://eudml.org/doc/298359
ER -
References
top- Alon, N., 10.1007/BF01261315, Combinatorica 16 (1996), 301-311. (1996) Zbl0860.05043MR1417340DOI10.1007/BF01261315
- Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B., 10.1016/S0095-8956(03)00036-4, J. Comb. Theory, Ser. B 88 (2003), 329-346. (2003) Zbl1030.05060MR1983363DOI10.1016/S0095-8956(03)00036-4
- Alon, N., Halperin, E., 10.1016/S0012-365X(97)00041-1, Discrete Math. 181 (1998), 19-29. (1998) Zbl0903.05028MR1600727DOI10.1016/S0012-365X(97)00041-1
- Alon, N., Krivelevich, M., Sudakov, B., 10.1017/S0963548305007017, Comb. Probab. Comput. 14 (2005), 629-647. (2005) Zbl1081.05047MR2174649DOI10.1017/S0963548305007017
- Bollobás, B., Scott, A. D., Better bounds for Max Cut, Contemporary Combinatorics Bolyai Society Mathematical Studies 10. Springer, Berlin (2002), 185-246. (2002) Zbl1014.90082MR1919571
- Bollobás, B., Scott, A. D., 10.1002/rsa.10062, Random Struct. Algorithms 21 (2002), 414-430. (2002) Zbl1013.05059MR1945378DOI10.1002/rsa.10062
- Conlon, D., Lee, J., Janzer, O., 10.1007/s00493-020-4202-1, Combinatorica 41 (2021), 465-494. (2021) Zbl07413845MR4328719DOI10.1007/s00493-020-4202-1
- Edwards, C. S., 10.4153/CJM-1973-048-x, Can. J. Math. 25 (1973), 475-485. (1973) Zbl0254.05116MR0337686DOI10.4153/CJM-1973-048-x
- Edwards, C. S., An improved lower bound for the number of edges in a largest bipartite subgraph, Recent Advances in Graph Theory Academia, Prague (1975), 167-181. (1975) Zbl0326.05115MR0398888
- Erdős, P., Gallai, T., 10.1007/BF02024498, Acta Math. Acad. Sci. Hung. 10 (1959), 337-356. (1959) Zbl0090.39401MR0114772DOI10.1007/BF02024498
- Erdős, P., Gyárfás, A., Kohayakawa, Y., 10.1016/S0012-365X(97)00004-6, Discrete Math. 177 (1997), 267-271. (1997) Zbl0888.05035MR1483451DOI10.1016/S0012-365X(97)00004-6
- Faudree, R. J., Simonovits, M., 10.1007/BF02579343, Combinatorica 3 (1983), 83-93. (1983) Zbl0521.05037MR0716423DOI10.1007/BF02579343
- Janzer, O., 10.37236/8262, Electron. J. Comb. 26 (2019), Article ID P3.3, 6 pages. (2019) Zbl1416.05152MR3982312DOI10.37236/8262
- Jensen, T. R., Toft, B., 10.1002/9781118032497, John Wiley & Sons, New York (1995). (1995) Zbl0855.05054MR1304254DOI10.1002/9781118032497
- Li, Y., Rousseau, C. C., Zang, W., 10.1007/s003730170060, Graphs Comb. 17 (2001), 123-128. (2001) Zbl0979.05078MR1828633DOI10.1007/s003730170060
- Poljak, S., Tuza, Z., 10.1137/S0895480191196824, SIAM J. Discrete Math. 7 (1994), 307-313. (1994) Zbl0806.68086MR1272003DOI10.1137/S0895480191196824
- Scott, A., 10.1017/CBO9780511734885.006, Surveys in Combinatorics 2005 London Mathematical Society Lecture Note Series 327. Cambridge University Press, Cambridge (2005), 95-117. (2005) Zbl1110.05084MR2187736DOI10.1017/CBO9780511734885.006
- Shearer, J. B., 10.1002/rsa.3240030211, Random Struct. Algorithms 3 (1992), 223-226. (1992) Zbl0765.05057MR1151364DOI10.1002/rsa.3240030211
- Shearer, J. B., 10.1002/rsa.3240070305, Random Struct. Algorithms 7 (1995), 269-271. (1995) Zbl0834.05030MR1369066DOI10.1002/rsa.3240070305
- Wei, V., A lower bound on the stability number of a simple graph, Technical Report 81-11217-9 Bell Laboratories Technical Memorandum, New Jersey (1981). (1981)
- Zeng, Q., Hou, J., 10.1017/S0004972716001295, Bull. Aust. Math. Soc. 96 (2017), 1-13. (2017) Zbl1367.05110MR3668394DOI10.1017/S0004972716001295
- Zeng, Q., Hou, J., 10.26493/1855-3974.1218.5ed, Ars Math. Contemp. 15 (2018), 147-160. (2018) Zbl1404.05092MR3862083DOI10.26493/1855-3974.1218.5ed
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.