Stable tubes in extriangulated categories

Li Wang; Jiaqun Wei; Haicheng Zhang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 765-782
  • ISSN: 0011-4642

Abstract

top
Let 𝒳 be a semibrick in an extriangulated category. If 𝒳 is a τ -semibrick, then the Auslander-Reiten quiver Γ ( ( 𝒳 ) ) of the filtration subcategory ( 𝒳 ) generated by 𝒳 is 𝔸 . If 𝒳 = { X i } i = 1 t is a τ -cycle semibrick, then Γ ( ( 𝒳 ) ) is 𝔸 / τ 𝔸 t .

How to cite

top

Wang, Li, Wei, Jiaqun, and Zhang, Haicheng. "Stable tubes in extriangulated categories." Czechoslovak Mathematical Journal 72.3 (2022): 765-782. <http://eudml.org/doc/298371>.

@article{Wang2022,
abstract = {Let $\mathcal \{X\}$ be a semibrick in an extriangulated category. If $\mathcal \{X\}$ is a $\tau $-semibrick, then the Auslander-Reiten quiver $\Gamma (\mathcal \{F\}(\mathcal \{X\}))$ of the filtration subcategory $\mathcal \{F\}(\mathcal \{X\})$ generated by $\mathcal \{X\}$ is $\mathbb \{Z\}\mathbb \{A\}_\{\infty \}$. If $\mathcal \{X\}=\lbrace X_\{i\}\rbrace _\{i=1\}^\{t\}$ is a $\tau $-cycle semibrick, then $\Gamma (\mathcal \{F\}(\mathcal \{X\}))$ is $\mathbb \{Z\}\mathbb \{A\}_\{\infty \}/\tau _\{\mathbb \{A\}\}^\{t\}$.},
author = {Wang, Li, Wei, Jiaqun, Zhang, Haicheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {extriangulated category; semibrick; Auslander-Reiten quiver},
language = {eng},
number = {3},
pages = {765-782},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stable tubes in extriangulated categories},
url = {http://eudml.org/doc/298371},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Wang, Li
AU - Wei, Jiaqun
AU - Zhang, Haicheng
TI - Stable tubes in extriangulated categories
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 765
EP - 782
AB - Let $\mathcal {X}$ be a semibrick in an extriangulated category. If $\mathcal {X}$ is a $\tau $-semibrick, then the Auslander-Reiten quiver $\Gamma (\mathcal {F}(\mathcal {X}))$ of the filtration subcategory $\mathcal {F}(\mathcal {X})$ generated by $\mathcal {X}$ is $\mathbb {Z}\mathbb {A}_{\infty }$. If $\mathcal {X}=\lbrace X_{i}\rbrace _{i=1}^{t}$ is a $\tau $-cycle semibrick, then $\Gamma (\mathcal {F}(\mathcal {X}))$ is $\mathbb {Z}\mathbb {A}_{\infty }/\tau _{\mathbb {A}}^{t}$.
LA - eng
KW - extriangulated category; semibrick; Auslander-Reiten quiver
UR - http://eudml.org/doc/298371
ER -

References

top
  1. Gorsky, M., Nakaoka, H., Palu, Y., Positive and negative extensions in extriangulated categories, Available at https://arxiv.org/abs/2103.12482 (2021), 51 pages. (2021) 
  2. Iyama, O., Nakaoka, H., Palu, Y., Auslander-Reiten theory in extriangulated categories, Available at https://arxiv.org/abs/1805.03776 (2019), 40 pages. (2019) 
  3. Nakaoka, H., Palu, Y., Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. (2019) Zbl1451.18021MR3931945
  4. Ringel, C. M., 10.1007/BFb0072870, Lecture Notes in Mathematics 1099. Springer, Berlin (1984). (1984) Zbl0546.16013MR0774589DOI10.1007/BFb0072870
  5. Simson, D., Skowroński, A., 10.1017/CBO9780511619212, London Mathematical Society Student Texts 71. Cambridge University Press, Cambridge (2007). (2007) Zbl1129.16001MR2360503DOI10.1017/CBO9780511619212
  6. Wang, L., Wei, J., Zhang, H., 10.1080/00927872.2021.1940192, Commun. Algebra 49 (2021), 5247-5262. (2021) Zbl07431295MR4328535DOI10.1080/00927872.2021.1940192
  7. Zhou, P., Zhu, B., 10.1016/j.jalgebra.2018.01.031, J. Algebra 502 (2018), 196-232. (2018) Zbl1388.18014MR3774890DOI10.1016/j.jalgebra.2018.01.031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.