On the average number of Sylow subgroups in finite groups
Alireza Khalili Asboei; Seyed Sadegh Salehi Amiri
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 3, page 747-750
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhalili Asboei, Alireza, and Salehi Amiri, Seyed Sadegh. "On the average number of Sylow subgroups in finite groups." Czechoslovak Mathematical Journal 72.3 (2022): 747-750. <http://eudml.org/doc/298372>.
@article{KhaliliAsboei2022,
abstract = {We prove that if the average number of Sylow subgroups of a finite group is less than $\tfrac\{41\}\{5\}$ and not equal to $\tfrac\{29\}\{4\}$, then $G$ is solvable or $G/F(G)\cong A_\{5\}$. In particular, if the average number of Sylow subgroups of a finite group is $\tfrac\{29\}\{4\}$, then $G/N\cong A_\{5\}$, where $N$ is the largest normal solvable subgroup of $G$. This generalizes an earlier result by Moretó et al.},
author = {Khalili Asboei, Alireza, Salehi Amiri, Seyed Sadegh},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sylow number; non-solvable group},
language = {eng},
number = {3},
pages = {747-750},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the average number of Sylow subgroups in finite groups},
url = {http://eudml.org/doc/298372},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Khalili Asboei, Alireza
AU - Salehi Amiri, Seyed Sadegh
TI - On the average number of Sylow subgroups in finite groups
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 747
EP - 750
AB - We prove that if the average number of Sylow subgroups of a finite group is less than $\tfrac{41}{5}$ and not equal to $\tfrac{29}{4}$, then $G$ is solvable or $G/F(G)\cong A_{5}$. In particular, if the average number of Sylow subgroups of a finite group is $\tfrac{29}{4}$, then $G/N\cong A_{5}$, where $N$ is the largest normal solvable subgroup of $G$. This generalizes an earlier result by Moretó et al.
LA - eng
KW - Sylow number; non-solvable group
UR - http://eudml.org/doc/298372
ER -
References
top- Asboei, A. K., Darafsheh, M. R., 10.1007/s41980-018-0104-z, Bull. Iran. Math. Soc. 44 (2018), 1509-1518. (2018) Zbl1452.20009MR3878407DOI10.1007/s41980-018-0104-z
- Conway, J. H., Curtis, R. T., Norton, S. P., Wilson, R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon, Oxford (1985). (1985) Zbl0568.20001MR827219
- M. Hall, Jr., The Theory of Groups, Macmillan, New York (1959). (1959) Zbl0084.02202MR0103215
- Lu, J., Meng, W., Moretó, A., Wu, K., 10.21136/CMJ.2021.0229-20, (to appear) in Czech. Math. J. MR4339115DOI10.21136/CMJ.2021.0229-20
- Moretó, A., 10.1002/mana.201300064, Math. Nachr. 287 (2014), 1183-1185. (2014) Zbl1310.20026MR3231532DOI10.1002/mana.201300064
- Zhang, J., 10.1006/jabr.1995.1235, J. Algebra 176 (1995), 111-123. (1995) Zbl0832.20042MR1345296DOI10.1006/jabr.1995.1235
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.