Some results on Sylow numbers of finite groups
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1083-1095
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Yang, and Zhang, Jinjie. "Some results on Sylow numbers of finite groups." Czechoslovak Mathematical Journal 74.4 (2024): 1083-1095. <http://eudml.org/doc/299647>.
@article{Liu2024,
abstract = {We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number $\{\rm asn\}(G)$ and we prove that if $G$ is a finite nonsolvable group with $\{\rm asn\}(G)<39/4$ and $\{\rm asn\}(G)\ne 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.},
author = {Liu, Yang, Zhang, Jinjie},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sylow number; nonsolvable group},
language = {eng},
number = {4},
pages = {1083-1095},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on Sylow numbers of finite groups},
url = {http://eudml.org/doc/299647},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Liu, Yang
AU - Zhang, Jinjie
TI - Some results on Sylow numbers of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1083
EP - 1095
AB - We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number ${\rm asn}(G)$ and we prove that if $G$ is a finite nonsolvable group with ${\rm asn}(G)<39/4$ and ${\rm asn}(G)\ne 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.
LA - eng
KW - Sylow number; nonsolvable group
UR - http://eudml.org/doc/299647
ER -
References
top- Anabanti, C. S., Moretó, A., Zarrin, M., 10.5802/crmath.146, C. R. Math., Acad. Sci. Paris 358 (2020), 1227-1230. (2020) Zbl1472.20027MR4206543DOI10.5802/crmath.146
- Asboei, A. K., Amiri, S. S. S., 10.21136/CMJ.2021.0131-21, Czech. Math. J. 72 (2022), 747-750. (2022) Zbl07584099MR4467939DOI10.21136/CMJ.2021.0131-21
- Asboei, A. K., Darafsheh, M. R., 10.1007/s41980-018-0104-z, Bull. Iran. Math. Soc. 44 (2018), 1509-1518. (2018) Zbl1452.20009MR3878407DOI10.1007/s41980-018-0104-z
- Chigira, N., 10.1006/jabr.1997.7268, J. Algebra 201 (1998), 71-85. (1998) Zbl0932.20016MR1608687DOI10.1006/jabr.1997.7268
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Oxford (1985). (1985) Zbl0568.20001MR0827219
- M. Hall, Jr., 10.1016/0021-8693(67)90076-2, J. Algebra 7 (1967), 363-371. (1967) Zbl0178.02102MR0222159DOI10.1016/0021-8693(67)90076-2
- Hall, P., 10.1112/jlms/s1-3.2.98, J. Lond. Math. Soc. 3 (1928), 98-105 9999JFM99999 54.0145.01. (1928) MR1574393DOI10.1112/jlms/s1-3.2.98
- Hurt, N. E., 10.1007/978-94-017-0251-5, Mathematics and its Applications 564. Kluwer Academic, Dordrecht (2003). (2003) Zbl1072.11042MR2042828DOI10.1007/978-94-017-0251-5
- Kondrat'ev, A. S., 10.1007/s11006-005-0133-9, Math. Notes 78 (2005), 338-346. (2005) Zbl1111.20017MR2227510DOI10.1007/s11006-005-0133-9
- Lu, J., Meng, W., Moretó, A., Wu, K., 10.21136/CMJ.2021.0229-20, Czech. Math. J. 71 (2021), 1129-1132. (2021) Zbl07442478MR4339115DOI10.21136/CMJ.2021.0229-20
- Moretó, A., 10.1007/s00013-012-0429-4, Arch. Math. 99 (2012), 301-304. (2012) Zbl1264.20023MR2990148DOI10.1007/s00013-012-0429-4
- Moretó, A., 10.1016/j.jalgebra.2012.12.030, J. Algebra 379 (2013), 80-84. (2013) Zbl1285.20019MR3019246DOI10.1016/j.jalgebra.2012.12.030
- Moretó, A., 10.1002/mana.201300064, Math. Nachr. 287 (2014), 1183-1185. (2014) Zbl1310.20026MR3231532DOI10.1002/mana.201300064
- Zhang, J., 10.1006/jabr.1995.1235, J. Algebra 176 (1995), 111-123. (1995) Zbl0832.20042MR1345296DOI10.1006/jabr.1995.1235
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.