Some results on Sylow numbers of finite groups

Yang Liu; Jinjie Zhang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1083-1095
  • ISSN: 0011-4642

Abstract

top
We study the group structure in terms of the number of Sylow p -subgroups, which is denoted by n p ( G ) . The first part is on the group structure of finite group G such that n p ( G ) = n p ( G / N ) , where N is a normal subgroup of G . The second part is on the average Sylow number asn ( G ) and we prove that if G is a finite nonsolvable group with asn ( G ) < 39 / 4 and asn ( G ) 29 / 4 , then G / F ( G ) A 5 , where F ( G ) is the Fitting subgroup of G . In the third part, we study the nonsolvable group with small sum of Sylow numbers.

How to cite

top

Liu, Yang, and Zhang, Jinjie. "Some results on Sylow numbers of finite groups." Czechoslovak Mathematical Journal 74.4 (2024): 1083-1095. <http://eudml.org/doc/299647>.

@article{Liu2024,
abstract = {We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number $\{\rm asn\}(G)$ and we prove that if $G$ is a finite nonsolvable group with $\{\rm asn\}(G)<39/4$ and $\{\rm asn\}(G)\ne 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.},
author = {Liu, Yang, Zhang, Jinjie},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sylow number; nonsolvable group},
language = {eng},
number = {4},
pages = {1083-1095},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on Sylow numbers of finite groups},
url = {http://eudml.org/doc/299647},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Liu, Yang
AU - Zhang, Jinjie
TI - Some results on Sylow numbers of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1083
EP - 1095
AB - We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number ${\rm asn}(G)$ and we prove that if $G$ is a finite nonsolvable group with ${\rm asn}(G)<39/4$ and ${\rm asn}(G)\ne 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.
LA - eng
KW - Sylow number; nonsolvable group
UR - http://eudml.org/doc/299647
ER -

References

top
  1. Anabanti, C. S., Moretó, A., Zarrin, M., 10.5802/crmath.146, C. R. Math., Acad. Sci. Paris 358 (2020), 1227-1230. (2020) Zbl1472.20027MR4206543DOI10.5802/crmath.146
  2. Asboei, A. K., Amiri, S. S. S., 10.21136/CMJ.2021.0131-21, Czech. Math. J. 72 (2022), 747-750. (2022) Zbl07584099MR4467939DOI10.21136/CMJ.2021.0131-21
  3. Asboei, A. K., Darafsheh, M. R., 10.1007/s41980-018-0104-z, Bull. Iran. Math. Soc. 44 (2018), 1509-1518. (2018) Zbl1452.20009MR3878407DOI10.1007/s41980-018-0104-z
  4. Chigira, N., 10.1006/jabr.1997.7268, J. Algebra 201 (1998), 71-85. (1998) Zbl0932.20016MR1608687DOI10.1006/jabr.1997.7268
  5. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Oxford (1985). (1985) Zbl0568.20001MR0827219
  6. M. Hall, Jr., 10.1016/0021-8693(67)90076-2, J. Algebra 7 (1967), 363-371. (1967) Zbl0178.02102MR0222159DOI10.1016/0021-8693(67)90076-2
  7. Hall, P., 10.1112/jlms/s1-3.2.98, J. Lond. Math. Soc. 3 (1928), 98-105 9999JFM99999 54.0145.01. (1928) MR1574393DOI10.1112/jlms/s1-3.2.98
  8. Hurt, N. E., 10.1007/978-94-017-0251-5, Mathematics and its Applications 564. Kluwer Academic, Dordrecht (2003). (2003) Zbl1072.11042MR2042828DOI10.1007/978-94-017-0251-5
  9. Kondrat'ev, A. S., 10.1007/s11006-005-0133-9, Math. Notes 78 (2005), 338-346. (2005) Zbl1111.20017MR2227510DOI10.1007/s11006-005-0133-9
  10. Lu, J., Meng, W., Moretó, A., Wu, K., 10.21136/CMJ.2021.0229-20, Czech. Math. J. 71 (2021), 1129-1132. (2021) Zbl07442478MR4339115DOI10.21136/CMJ.2021.0229-20
  11. Moretó, A., 10.1007/s00013-012-0429-4, Arch. Math. 99 (2012), 301-304. (2012) Zbl1264.20023MR2990148DOI10.1007/s00013-012-0429-4
  12. Moretó, A., 10.1016/j.jalgebra.2012.12.030, J. Algebra 379 (2013), 80-84. (2013) Zbl1285.20019MR3019246DOI10.1016/j.jalgebra.2012.12.030
  13. Moretó, A., 10.1002/mana.201300064, Math. Nachr. 287 (2014), 1183-1185. (2014) Zbl1310.20026MR3231532DOI10.1002/mana.201300064
  14. Zhang, J., 10.1006/jabr.1995.1235, J. Algebra 176 (1995), 111-123. (1995) Zbl0832.20042MR1345296DOI10.1006/jabr.1995.1235

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.