A general decay estimate for a finite memory thermoelastic Bresse system

Cyril Dennis Enyi; Soh Edwin Mukiawa

Applications of Mathematics (2022)

  • Volume: 67, Issue: 5, page 633-656
  • ISSN: 0862-7940

Abstract

top
This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation of the equations of the system, as against the usual practice in the literature.

How to cite

top

Enyi, Cyril Dennis, and Mukiawa, Soh Edwin. "A general decay estimate for a finite memory thermoelastic Bresse system." Applications of Mathematics 67.5 (2022): 633-656. <http://eudml.org/doc/298471>.

@article{Enyi2022,
abstract = {This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation of the equations of the system, as against the usual practice in the literature.},
author = {Enyi, Cyril Dennis, Mukiawa, Soh Edwin},
journal = {Applications of Mathematics},
keywords = {general decay; Bresse system; nonequal speed; viscoelastic; thermoelastic},
language = {eng},
number = {5},
pages = {633-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A general decay estimate for a finite memory thermoelastic Bresse system},
url = {http://eudml.org/doc/298471},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Enyi, Cyril Dennis
AU - Mukiawa, Soh Edwin
TI - A general decay estimate for a finite memory thermoelastic Bresse system
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 633
EP - 656
AB - This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation of the equations of the system, as against the usual practice in the literature.
LA - eng
KW - general decay; Bresse system; nonequal speed; viscoelastic; thermoelastic
UR - http://eudml.org/doc/298471
ER -

References

top
  1. Alves, M. O., Fatori, L. H., Silva, M. A. Jorge, Monteiro, R. N., 10.1002/mma.3115, Math. Methods Appl. Sci. 38 (2015), 898-908. (2015) Zbl1316.35178MR3324487DOI10.1002/mma.3115
  2. Alves, M. O., Tavares, E. H. Gomes, Silva, M. A. Jorge, Rodrigues, J. H., 10.1137/18M1191774, SIAM J. Math. Anal. 51 (2019), 4520-4543. (2019) Zbl1437.35055MR4029814DOI10.1137/18M1191774
  3. Ammar-Khodja, F., Benabdallah, A., Rivera, J. E. Muñoz, Racke, R., 10.1016/S0022-0396(03)00185-2, J. Differ. Equations 194 (2003), 82-115. (2003) Zbl1131.74303MR2001030DOI10.1016/S0022-0396(03)00185-2
  4. Bresse, J. A. C., Cours de mécanique appliquée, Mallet Bachelier, Paris (1859), French. (1859) 
  5. Dell'Oro, F., 10.1016/j.jde.2015.01.025, J. Differ. Equations 258 (2015), 3902-3927. (2015) Zbl1311.35024MR3322987DOI10.1016/j.jde.2015.01.025
  6. Arwadi, T. El, Youssef, W., 10.1007/s00245-019-09611-z, Appl. Math. Optim. 83 (2021), 1831-1857. (2021) Zbl7371826MR4261274DOI10.1007/s00245-019-09611-z
  7. Enyi, C. D., 10.1016/j.rinam.2021.100204, Results Appl. Math. 12 (2021), Article ID 100204, 20 pages. (2021) Zbl1481.35053MR4330084DOI10.1016/j.rinam.2021.100204
  8. Enyi, C. D., Feng, B., 10.1007/s40840-020-01035-1, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1837-1866. (2021) Zbl1470.35057MR4270141DOI10.1007/s40840-020-01035-1
  9. Fatori, L. H., Monteiro, R. N., 10.1016/j.aml.2011.09.067, Appl. Math. Lett. 25 (2012), 600-604. (2012) Zbl1325.74065MR2856041DOI10.1016/j.aml.2011.09.067
  10. Guesmia, A., Kafini, M., 10.1002/mma.3228, Math. Methods Appl. Sci. 38 (2015), 2389-2402. (2015) Zbl1317.35007MR3366806DOI10.1002/mma.3228
  11. Guesmia, A., Messaoudi, S. A., 10.1016/j.amc.2008.05.122, Appl. Math. Comput. 206 (2008), 589-597. (2008) Zbl1154.74030MR2483034DOI10.1016/j.amc.2008.05.122
  12. Guesmia, A., Messaoudi, S. A., 10.1002/mma.1125, Math. Methods Appl. Sci. 32 (2009), 2102-2122. (2009) Zbl1183.35036MR2571867DOI10.1002/mma.1125
  13. Lagnese, J. E., Leugering, G., Schmidt, E. J. P. G., 10.1002/mma.1670160503, Math. Methods Appl. Sci. 16 (1993), 327-358. (1993) Zbl0773.73060MR1217432DOI10.1002/mma.1670160503
  14. Lions, J. L., Magenes, E., 10.1007/978-3-642-65393-3, Die Grundlehren der mathematischen Wissenschaften 183. Springer, Berlin (1973). (1973) Zbl0251.35001MR0350179DOI10.1007/978-3-642-65393-3
  15. Liu, Z., Rao, B., 10.1007/s00033-008-6122-6, Z. Angew. Math. Phys. 60 (2009), 54-69. (2009) Zbl1161.74030MR2469727DOI10.1007/s00033-008-6122-6
  16. Ma, T. F., Monteiro, R. N., 10.1137/15M1039894, SIAM J. Math. Anal. 49 (2017), 2468-2495. (2017) Zbl1391.35071MR3668597DOI10.1137/15M1039894
  17. Messaoudi, S. A., Hassan, J. H., 10.3934/cpaa.2019078, Commun. Pure Appl. Anal. 18 (2019), 1637-1662. (2019) Zbl1421.35028MR3927415DOI10.3934/cpaa.2019078
  18. Rivera, J. E. Muñoz, Racke, R., 10.1016/S0022-247X(02)00436-5, J. Math. Anal. Appl. 276 (2002), 248-278. (2002) Zbl1106.35333MR1944350DOI10.1016/S0022-247X(02)00436-5
  19. Soriano, J. A., Rivera, J. E. Muñoz, Fatori, L. H., 10.1016/j.jmaa.2011.08.072, J. Math. Anal. Appl. 387 (2012), 284-290. (2012) Zbl1231.35113MR2845750DOI10.1016/j.jmaa.2011.08.072
  20. Soufyane, A., 10.1016/S0764-4442(99)80244-4, C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 731-734 French. (1999) Zbl0943.74042MR1680836DOI10.1016/S0764-4442(99)80244-4
  21. Soufyane, A., Said-Houari, B., 10.3934/eect.2014.3.713, Evol. Equ. Control Theory 3 (2014), 713-738. (2014) Zbl1304.35105MR3274656DOI10.3934/eect.2014.3.713
  22. Tatar, N.-E., 10.1080/00036811.2011.587810, Appl. Anal. 92 (2013), 27-43. (2013) Zbl1261.35087MR3007921DOI10.1080/00036811.2011.587810
  23. Wehbe, A., Youssef, W., 10.1063/1.3486094, J. Math. Phys. 51 (2010), Article ID 103523, 17 pages. (2010) Zbl1314.74035MR2761337DOI10.1063/1.3486094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.