A general decay estimate for a finite memory thermoelastic Bresse system
Cyril Dennis Enyi; Soh Edwin Mukiawa
Applications of Mathematics (2022)
- Volume: 67, Issue: 5, page 633-656
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topEnyi, Cyril Dennis, and Mukiawa, Soh Edwin. "A general decay estimate for a finite memory thermoelastic Bresse system." Applications of Mathematics 67.5 (2022): 633-656. <http://eudml.org/doc/298471>.
@article{Enyi2022,
abstract = {This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation of the equations of the system, as against the usual practice in the literature.},
author = {Enyi, Cyril Dennis, Mukiawa, Soh Edwin},
journal = {Applications of Mathematics},
keywords = {general decay; Bresse system; nonequal speed; viscoelastic; thermoelastic},
language = {eng},
number = {5},
pages = {633-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A general decay estimate for a finite memory thermoelastic Bresse system},
url = {http://eudml.org/doc/298471},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Enyi, Cyril Dennis
AU - Mukiawa, Soh Edwin
TI - A general decay estimate for a finite memory thermoelastic Bresse system
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 633
EP - 656
AB - This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation of the equations of the system, as against the usual practice in the literature.
LA - eng
KW - general decay; Bresse system; nonequal speed; viscoelastic; thermoelastic
UR - http://eudml.org/doc/298471
ER -
References
top- Alves, M. O., Fatori, L. H., Silva, M. A. Jorge, Monteiro, R. N., 10.1002/mma.3115, Math. Methods Appl. Sci. 38 (2015), 898-908. (2015) Zbl1316.35178MR3324487DOI10.1002/mma.3115
- Alves, M. O., Tavares, E. H. Gomes, Silva, M. A. Jorge, Rodrigues, J. H., 10.1137/18M1191774, SIAM J. Math. Anal. 51 (2019), 4520-4543. (2019) Zbl1437.35055MR4029814DOI10.1137/18M1191774
- Ammar-Khodja, F., Benabdallah, A., Rivera, J. E. Muñoz, Racke, R., 10.1016/S0022-0396(03)00185-2, J. Differ. Equations 194 (2003), 82-115. (2003) Zbl1131.74303MR2001030DOI10.1016/S0022-0396(03)00185-2
- Bresse, J. A. C., Cours de mécanique appliquée, Mallet Bachelier, Paris (1859), French. (1859)
- Dell'Oro, F., 10.1016/j.jde.2015.01.025, J. Differ. Equations 258 (2015), 3902-3927. (2015) Zbl1311.35024MR3322987DOI10.1016/j.jde.2015.01.025
- Arwadi, T. El, Youssef, W., 10.1007/s00245-019-09611-z, Appl. Math. Optim. 83 (2021), 1831-1857. (2021) Zbl7371826MR4261274DOI10.1007/s00245-019-09611-z
- Enyi, C. D., 10.1016/j.rinam.2021.100204, Results Appl. Math. 12 (2021), Article ID 100204, 20 pages. (2021) Zbl1481.35053MR4330084DOI10.1016/j.rinam.2021.100204
- Enyi, C. D., Feng, B., 10.1007/s40840-020-01035-1, Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1837-1866. (2021) Zbl1470.35057MR4270141DOI10.1007/s40840-020-01035-1
- Fatori, L. H., Monteiro, R. N., 10.1016/j.aml.2011.09.067, Appl. Math. Lett. 25 (2012), 600-604. (2012) Zbl1325.74065MR2856041DOI10.1016/j.aml.2011.09.067
- Guesmia, A., Kafini, M., 10.1002/mma.3228, Math. Methods Appl. Sci. 38 (2015), 2389-2402. (2015) Zbl1317.35007MR3366806DOI10.1002/mma.3228
- Guesmia, A., Messaoudi, S. A., 10.1016/j.amc.2008.05.122, Appl. Math. Comput. 206 (2008), 589-597. (2008) Zbl1154.74030MR2483034DOI10.1016/j.amc.2008.05.122
- Guesmia, A., Messaoudi, S. A., 10.1002/mma.1125, Math. Methods Appl. Sci. 32 (2009), 2102-2122. (2009) Zbl1183.35036MR2571867DOI10.1002/mma.1125
- Lagnese, J. E., Leugering, G., Schmidt, E. J. P. G., 10.1002/mma.1670160503, Math. Methods Appl. Sci. 16 (1993), 327-358. (1993) Zbl0773.73060MR1217432DOI10.1002/mma.1670160503
- Lions, J. L., Magenes, E., 10.1007/978-3-642-65393-3, Die Grundlehren der mathematischen Wissenschaften 183. Springer, Berlin (1973). (1973) Zbl0251.35001MR0350179DOI10.1007/978-3-642-65393-3
- Liu, Z., Rao, B., 10.1007/s00033-008-6122-6, Z. Angew. Math. Phys. 60 (2009), 54-69. (2009) Zbl1161.74030MR2469727DOI10.1007/s00033-008-6122-6
- Ma, T. F., Monteiro, R. N., 10.1137/15M1039894, SIAM J. Math. Anal. 49 (2017), 2468-2495. (2017) Zbl1391.35071MR3668597DOI10.1137/15M1039894
- Messaoudi, S. A., Hassan, J. H., 10.3934/cpaa.2019078, Commun. Pure Appl. Anal. 18 (2019), 1637-1662. (2019) Zbl1421.35028MR3927415DOI10.3934/cpaa.2019078
- Rivera, J. E. Muñoz, Racke, R., 10.1016/S0022-247X(02)00436-5, J. Math. Anal. Appl. 276 (2002), 248-278. (2002) Zbl1106.35333MR1944350DOI10.1016/S0022-247X(02)00436-5
- Soriano, J. A., Rivera, J. E. Muñoz, Fatori, L. H., 10.1016/j.jmaa.2011.08.072, J. Math. Anal. Appl. 387 (2012), 284-290. (2012) Zbl1231.35113MR2845750DOI10.1016/j.jmaa.2011.08.072
- Soufyane, A., 10.1016/S0764-4442(99)80244-4, C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 731-734 French. (1999) Zbl0943.74042MR1680836DOI10.1016/S0764-4442(99)80244-4
- Soufyane, A., Said-Houari, B., 10.3934/eect.2014.3.713, Evol. Equ. Control Theory 3 (2014), 713-738. (2014) Zbl1304.35105MR3274656DOI10.3934/eect.2014.3.713
- Tatar, N.-E., 10.1080/00036811.2011.587810, Appl. Anal. 92 (2013), 27-43. (2013) Zbl1261.35087MR3007921DOI10.1080/00036811.2011.587810
- Wehbe, A., Youssef, W., 10.1063/1.3486094, J. Math. Phys. 51 (2010), Article ID 103523, 17 pages. (2010) Zbl1314.74035MR2761337DOI10.1063/1.3486094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.