New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations

Mimia Benhadri; Tomás Caraballo

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 3, page 385-405
  • ISSN: 0862-7959

Abstract

top
This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.

How to cite

top

Benhadri, Mimia, and Caraballo, Tomás. "New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations." Mathematica Bohemica 147.3 (2022): 385-405. <http://eudml.org/doc/298480>.

@article{Benhadri2022,
abstract = {This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.},
author = {Benhadri, Mimia, Caraballo, Tomás},
journal = {Mathematica Bohemica},
keywords = {contraction mapping principle; asymptotic stability; neutral differential equation},
language = {eng},
number = {3},
pages = {385-405},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations},
url = {http://eudml.org/doc/298480},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Benhadri, Mimia
AU - Caraballo, Tomás
TI - New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 385
EP - 405
AB - This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.
LA - eng
KW - contraction mapping principle; asymptotic stability; neutral differential equation
UR - http://eudml.org/doc/298480
ER -

References

top
  1. Ardjouni, A., Djoudi, A., 10.1016/j.na.2010.10.050, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2062-2070. (2011) Zbl1216.34069MR2781737DOI10.1016/j.na.2010.10.050
  2. Ardjouni, A., Djoudi, A., 10.7494/OpMath.2012.32.1.5, Opusc. Math. 32 (2012), 5-19. (2012) Zbl1254.34110MR2852465DOI10.7494/OpMath.2012.32.1.5
  3. Ardjouni, A., Djoudi, A., Global asymptotic stability of nonlinear neutral differential equations with variable delays, Nonlinear Stud. 23 (2016), 157-166. (2016) Zbl1348.34126MR3524420
  4. Ardjouni, A., Djoudi, A., Global asymptotic stability of nonlinear neutral differential equations with infinite delay, Transylv. J. Math. Mech. 9 (2017), 125-133. (2017) MR3524420
  5. Brayton, R. K., 10.1090/qam/204800, Q. Appl. Math. 24 (1966), 215-224. (1966) Zbl0143.30701MR0204800DOI10.1090/qam/204800
  6. Burton, T. A., 10.1090/S0002-9939-96-03533-2, Proc. Am. Math. Soc. 124 (1996), 2383-2390. (1996) Zbl0873.45003MR1346965DOI10.1090/S0002-9939-96-03533-2
  7. Burton, T. A., Liapunov functionals, fixed points, and stability by Krasnoselskii's theorem, Nonlinear Stud. 9 (2002), 181-190. (2002) Zbl1084.47522MR1898587
  8. Burton, T. A., Stability by fixed point theory or Liapunov theory: A comparison, Fixed Point Theory 4 (2003), 15-32. (2003) Zbl1061.47065MR2031819
  9. Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York (2006). (2006) Zbl1160.34001MR2281958
  10. Dib, Y. M., Maroun, M. R., Raffoul, Y. N., Periodicity and stability in neutral nonlinear differential equations with functional delay, Electron. J. Differ. Equ. 2005 (2005), Article ID 142, 11 pages. (2005) Zbl1097.34049MR2181286
  11. Djoudi, A., Khemis, R., 10.1515/GMJ.2006.25, Georgian Math. J. 13 (2006), 25-34. (2006) Zbl1104.34052MR2242326DOI10.1515/GMJ.2006.25
  12. Fan, M., Xia, Z., Zhu, H., Asymptotic stability of delay differential equations via fixed point theory and applications, Can. Appl. Math. Q. 18 (2010), 361-380. (2010) Zbl1237.34125MR2858144
  13. Guo, Y., 10.3906/mat-1005-267, Turk. J. Math. 36 (2012), 297-304. (2012) Zbl1252.54033MR2912045DOI10.3906/mat-1005-267
  14. Guo, Y., Xu, C., Wu, J., 10.1080/00207179.2016.1213524, Int. J. Control 90 (2017), 1555-1560. (2017) Zbl1367.93697MR3658462DOI10.1080/00207179.2016.1213524
  15. Hale, J. K., Meyer, K. R., 10.1090/memo/0076, Mem. Am. Math. Soc. 76 (1967), 65 pages. (1967) Zbl0179.20501MR0223842DOI10.1090/memo/0076
  16. Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7, Applied Mathematical Sciences 99. Springer, New York (1993). (1993) Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
  17. Jin, C., Luo, J., 10.1090/S0002-9939-07-09089-2, Proc. Am. Math. Soc. 136 (2008), 909-918. (2008) Zbl1136.34059MR2361863DOI10.1090/S0002-9939-07-09089-2
  18. Kolmanovskii, V. B., Myshkis, A. D., 10.1007/978-94-015-8084-7, Mathematics and Its Applications. Soviet Series 85. Kluwer Academic, Dordrecht (1992). (1992) Zbl0785.34005MR1256486DOI10.1007/978-94-015-8084-7
  19. Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Mathematics in Science and Engineering 191. Academic Press, Boston (1993). (1993) Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
  20. Lisena, B., 10.1016/j.nonrwa.2006.09.002, Nonlinear Anal., Real World Appl. 9 (2008), 53-63. (2008) Zbl1139.34052MR2370162DOI10.1016/j.nonrwa.2006.09.002
  21. Liu, G., Yan, J., 10.1016/j.cnsns.2013.08.035, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. (2014) Zbl1457.34110MR3119279DOI10.1016/j.cnsns.2013.08.035
  22. Luo, J., 10.1016/j.jmaa.2006.12.058, J. Math. Anal. Appl. 334 (2007), 431-440. (2007) Zbl1160.60020MR2332567DOI10.1016/j.jmaa.2006.12.058
  23. Monje, A. A. Z. Mahdi, Ahmed, B. A. A., 10.22401/ANJS.23.1.10, Al-Nahrain J. Sci. 23 (2020), 69-72. (2020) DOI10.22401/ANJS.23.1.10
  24. Pinto, M., Sepúlveda, D., 10.1016/j.na.2011.02.029, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 3926-3933. (2011) Zbl1237.34129MR2802978DOI10.1016/j.na.2011.02.029
  25. Raffoul, Y. N., 10.1016/j.mcm.2004.10.001, Math. Comput. Modelling 40 (2004), 691-700. (2004) Zbl1083.34536MR2106161DOI10.1016/j.mcm.2004.10.001
  26. Seifert, G., 10.1016/0022-0396(73)90058-2, J. Differ. Equations 14 (1973), 424-430. (1973) Zbl0248.34078MR0492745DOI10.1016/0022-0396(73)90058-2
  27. Smart, D. R., Fixed Points Theorems, Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). (1980) Zbl0427.47036MR0467717
  28. Tunç, C., Stability and boundedness of solutions of non-autonomous differential equations of second order, J. Comput. Anal. Appl. 13 (2011), 1067-1074. (2011) Zbl1227.34054MR2789545
  29. Tunç, C., Asymptotic stability of solutions of a class of neutral differential equations with multiple deviating arguments, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57 (2014), 121-130. (2014) Zbl1340.34273MR3204786
  30. Tunç, C., 10.1007/s40590-014-0050-6, Bol. Soc. Mat. Mex., III. Ser. 21 (2015), 219-231. (2015) Zbl1327.34126MR3377988DOI10.1007/s40590-014-0050-6
  31. Tunç, C., Sirma, A., Stability analysis of a class of generalized neutral equations, J. Comput. Anal. Appl. 12 (2010), 754-759. (2010) Zbl1197.34145MR2649294
  32. Tunç, C., Tunç, O., 10.1016/j.jare.2015.04.005, J. Adv. Research 7 (2016), 165-168. (2016) DOI10.1016/j.jare.2015.04.005
  33. Yazgan, R., Tunç, C., Atan, Ö., On the global asymptotic stability of solutions to neutral equations of first order, Palest. J. Math. 6 (2017), 542-550. (2017) Zbl1369.34096MR3646266
  34. Zhang, B., Contraction mapping and stability in a delay-differential equation, Dynamic Systems and Applications. Volume 4 Dynamic Publishers, Atlanta (2004), 183-190. (2004) Zbl1079.34543MR2117781
  35. Zhang, B., 10.1016/j.na.2005.02.081, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e233--e242. (2005) Zbl1159.34348DOI10.1016/j.na.2005.02.081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.