New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations
Mimia Benhadri; Tomás Caraballo
Mathematica Bohemica (2022)
- Volume: 147, Issue: 3, page 385-405
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBenhadri, Mimia, and Caraballo, Tomás. "New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations." Mathematica Bohemica 147.3 (2022): 385-405. <http://eudml.org/doc/298480>.
@article{Benhadri2022,
abstract = {This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.},
author = {Benhadri, Mimia, Caraballo, Tomás},
journal = {Mathematica Bohemica},
keywords = {contraction mapping principle; asymptotic stability; neutral differential equation},
language = {eng},
number = {3},
pages = {385-405},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations},
url = {http://eudml.org/doc/298480},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Benhadri, Mimia
AU - Caraballo, Tomás
TI - New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 385
EP - 405
AB - This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.
LA - eng
KW - contraction mapping principle; asymptotic stability; neutral differential equation
UR - http://eudml.org/doc/298480
ER -
References
top- Ardjouni, A., Djoudi, A., 10.1016/j.na.2010.10.050, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2062-2070. (2011) Zbl1216.34069MR2781737DOI10.1016/j.na.2010.10.050
- Ardjouni, A., Djoudi, A., 10.7494/OpMath.2012.32.1.5, Opusc. Math. 32 (2012), 5-19. (2012) Zbl1254.34110MR2852465DOI10.7494/OpMath.2012.32.1.5
- Ardjouni, A., Djoudi, A., Global asymptotic stability of nonlinear neutral differential equations with variable delays, Nonlinear Stud. 23 (2016), 157-166. (2016) Zbl1348.34126MR3524420
- Ardjouni, A., Djoudi, A., Global asymptotic stability of nonlinear neutral differential equations with infinite delay, Transylv. J. Math. Mech. 9 (2017), 125-133. (2017) MR3524420
- Brayton, R. K., 10.1090/qam/204800, Q. Appl. Math. 24 (1966), 215-224. (1966) Zbl0143.30701MR0204800DOI10.1090/qam/204800
- Burton, T. A., 10.1090/S0002-9939-96-03533-2, Proc. Am. Math. Soc. 124 (1996), 2383-2390. (1996) Zbl0873.45003MR1346965DOI10.1090/S0002-9939-96-03533-2
- Burton, T. A., Liapunov functionals, fixed points, and stability by Krasnoselskii's theorem, Nonlinear Stud. 9 (2002), 181-190. (2002) Zbl1084.47522MR1898587
- Burton, T. A., Stability by fixed point theory or Liapunov theory: A comparison, Fixed Point Theory 4 (2003), 15-32. (2003) Zbl1061.47065MR2031819
- Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York (2006). (2006) Zbl1160.34001MR2281958
- Dib, Y. M., Maroun, M. R., Raffoul, Y. N., Periodicity and stability in neutral nonlinear differential equations with functional delay, Electron. J. Differ. Equ. 2005 (2005), Article ID 142, 11 pages. (2005) Zbl1097.34049MR2181286
- Djoudi, A., Khemis, R., 10.1515/GMJ.2006.25, Georgian Math. J. 13 (2006), 25-34. (2006) Zbl1104.34052MR2242326DOI10.1515/GMJ.2006.25
- Fan, M., Xia, Z., Zhu, H., Asymptotic stability of delay differential equations via fixed point theory and applications, Can. Appl. Math. Q. 18 (2010), 361-380. (2010) Zbl1237.34125MR2858144
- Guo, Y., 10.3906/mat-1005-267, Turk. J. Math. 36 (2012), 297-304. (2012) Zbl1252.54033MR2912045DOI10.3906/mat-1005-267
- Guo, Y., Xu, C., Wu, J., 10.1080/00207179.2016.1213524, Int. J. Control 90 (2017), 1555-1560. (2017) Zbl1367.93697MR3658462DOI10.1080/00207179.2016.1213524
- Hale, J. K., Meyer, K. R., 10.1090/memo/0076, Mem. Am. Math. Soc. 76 (1967), 65 pages. (1967) Zbl0179.20501MR0223842DOI10.1090/memo/0076
- Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7, Applied Mathematical Sciences 99. Springer, New York (1993). (1993) Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
- Jin, C., Luo, J., 10.1090/S0002-9939-07-09089-2, Proc. Am. Math. Soc. 136 (2008), 909-918. (2008) Zbl1136.34059MR2361863DOI10.1090/S0002-9939-07-09089-2
- Kolmanovskii, V. B., Myshkis, A. D., 10.1007/978-94-015-8084-7, Mathematics and Its Applications. Soviet Series 85. Kluwer Academic, Dordrecht (1992). (1992) Zbl0785.34005MR1256486DOI10.1007/978-94-015-8084-7
- Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Mathematics in Science and Engineering 191. Academic Press, Boston (1993). (1993) Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
- Lisena, B., 10.1016/j.nonrwa.2006.09.002, Nonlinear Anal., Real World Appl. 9 (2008), 53-63. (2008) Zbl1139.34052MR2370162DOI10.1016/j.nonrwa.2006.09.002
- Liu, G., Yan, J., 10.1016/j.cnsns.2013.08.035, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. (2014) Zbl1457.34110MR3119279DOI10.1016/j.cnsns.2013.08.035
- Luo, J., 10.1016/j.jmaa.2006.12.058, J. Math. Anal. Appl. 334 (2007), 431-440. (2007) Zbl1160.60020MR2332567DOI10.1016/j.jmaa.2006.12.058
- Monje, A. A. Z. Mahdi, Ahmed, B. A. A., 10.22401/ANJS.23.1.10, Al-Nahrain J. Sci. 23 (2020), 69-72. (2020) DOI10.22401/ANJS.23.1.10
- Pinto, M., Sepúlveda, D., 10.1016/j.na.2011.02.029, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 3926-3933. (2011) Zbl1237.34129MR2802978DOI10.1016/j.na.2011.02.029
- Raffoul, Y. N., 10.1016/j.mcm.2004.10.001, Math. Comput. Modelling 40 (2004), 691-700. (2004) Zbl1083.34536MR2106161DOI10.1016/j.mcm.2004.10.001
- Seifert, G., 10.1016/0022-0396(73)90058-2, J. Differ. Equations 14 (1973), 424-430. (1973) Zbl0248.34078MR0492745DOI10.1016/0022-0396(73)90058-2
- Smart, D. R., Fixed Points Theorems, Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). (1980) Zbl0427.47036MR0467717
- Tunç, C., Stability and boundedness of solutions of non-autonomous differential equations of second order, J. Comput. Anal. Appl. 13 (2011), 1067-1074. (2011) Zbl1227.34054MR2789545
- Tunç, C., Asymptotic stability of solutions of a class of neutral differential equations with multiple deviating arguments, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57 (2014), 121-130. (2014) Zbl1340.34273MR3204786
- Tunç, C., 10.1007/s40590-014-0050-6, Bol. Soc. Mat. Mex., III. Ser. 21 (2015), 219-231. (2015) Zbl1327.34126MR3377988DOI10.1007/s40590-014-0050-6
- Tunç, C., Sirma, A., Stability analysis of a class of generalized neutral equations, J. Comput. Anal. Appl. 12 (2010), 754-759. (2010) Zbl1197.34145MR2649294
- Tunç, C., Tunç, O., 10.1016/j.jare.2015.04.005, J. Adv. Research 7 (2016), 165-168. (2016) DOI10.1016/j.jare.2015.04.005
- Yazgan, R., Tunç, C., Atan, Ö., On the global asymptotic stability of solutions to neutral equations of first order, Palest. J. Math. 6 (2017), 542-550. (2017) Zbl1369.34096MR3646266
- Zhang, B., Contraction mapping and stability in a delay-differential equation, Dynamic Systems and Applications. Volume 4 Dynamic Publishers, Atlanta (2004), 183-190. (2004) Zbl1079.34543MR2117781
- Zhang, B., 10.1016/j.na.2005.02.081, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e233--e242. (2005) Zbl1159.34348DOI10.1016/j.na.2005.02.081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.