Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition

Yong-Hyok Jo; Myong-Hwan Ri

Applications of Mathematics (2022)

  • Volume: 67, Issue: 5, page 573-592
  • ISSN: 0862-7940

Abstract

top
We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value u 0 H 1 ( Ω ) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when u 0 L 2 ( Ω ) and the integral kernel in the nonlocal boundary condition is symmetric.

How to cite

top

Jo, Yong-Hyok, and Ri, Myong-Hwan. "Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition." Applications of Mathematics 67.5 (2022): 573-592. <http://eudml.org/doc/298485>.

@article{Jo2022,
abstract = {We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value $u_0\in H^1(\Omega )$ is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when $u_0\in L^2(\Omega )$ and the integral kernel in the nonlocal boundary condition is symmetric.},
author = {Jo, Yong-Hyok, Ri, Myong-Hwan},
journal = {Applications of Mathematics},
keywords = {Rothe's method; nonlocal boundary condition; semilinear parabolic equation; inverse source problem},
language = {eng},
number = {5},
pages = {573-592},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition},
url = {http://eudml.org/doc/298485},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Jo, Yong-Hyok
AU - Ri, Myong-Hwan
TI - Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 573
EP - 592
AB - We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value $u_0\in H^1(\Omega )$ is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when $u_0\in L^2(\Omega )$ and the integral kernel in the nonlocal boundary condition is symmetric.
LA - eng
KW - Rothe's method; nonlocal boundary condition; semilinear parabolic equation; inverse source problem
UR - http://eudml.org/doc/298485
ER -

References

top
  1. Azizbayov, E. I., 10.1186/s13661-019-1126-z, Bound. Value Probl. 2019 (2019), Article ID 11, 19 pages. (2019) MR3900856DOI10.1186/s13661-019-1126-z
  2. Bahuguna, D., Raghavendra, V., 10.1016/0362-546X(94)90252-6, Nonlinear Anal., Theory Methods Appl. 23 (1994), 75-81. (1994) Zbl0810.34054MR1288499DOI10.1016/0362-546X(94)90252-6
  3. Buda, V., Chegis, R., Sapagovas, M., A model of multiple diffusion from a limited source, Differ. Uravn. Primen. 38 (1986), 9-14 Russian. (1986) Zbl0621.76097
  4. Carl, S., Lakshmikantham, V., 10.1016/S0022-247X(02)00114-2, J. Math. Anal. Appl. 271 (2002), 182-205. (2002) Zbl1010.65041MR1923755DOI10.1016/S0022-247X(02)00114-2
  5. Chaoui, A., Guezane-Lakoud, A., 10.1016/j.amc.2015.06.004, Appl. Math. Comput. 266 (2015), 903-908. (2015) Zbl1410.65354MR3377607DOI10.1016/j.amc.2015.06.004
  6. Cui, M. R., 10.1016/j.amc.2015.03.039, Appl. Math. Comput. 260 (2015), 227-241. (2015) Zbl1410.65304MR3343264DOI10.1016/j.amc.2015.03.039
  7. Daoud, D. S., 10.1016/j.cam.2007.10.060, J. Comput. Appl. Math. 221 (2008), 261-272. (2008) Zbl1152.65096MR2458768DOI10.1016/j.cam.2007.10.060
  8. Day, W. A., 10.1090/qam/693879, Q. Appl. Math. 40 (1983), 468-475. (1983) Zbl0514.35038MR0693879DOI10.1090/qam/693879
  9. Staelen, R. H. De, Slodička, M., 10.1016/j.na.2014.09.002, Nonlinear Anal., Theory Methods Appl., Ser. A 112 (2015), 43-57. (2015) Zbl1302.35435MR3274282DOI10.1016/j.na.2014.09.002
  10. Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S., 10.1016/j.camwa.2016.01.017, Comput. Math. Appl. 71 (2016), 2301-2312. (2016) Zbl1443.35053MR3501321DOI10.1016/j.camwa.2016.01.017
  11. Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S., An inverse diffusion coefficient problem for a parabolic equation with integral constraint, Int. J. Numer. Anal. Model. 15 (2018), 552-563. (2018) Zbl1395.35103MR3789578
  12. Kačur, J., Method of Rothe in Evolution Equations, Teubner Texte zur Mathematik 80. Teubner, Leipzig (1985). (1985) Zbl0582.65084MR0834176
  13. Kozhanov, A. I., 10.14498/vsgtu308, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 30 (2004), 63-69 Russian. (2004) MR2766545DOI10.14498/vsgtu308
  14. Merazga, N., Bouziani, A., 10.1016/j.na.2005.12.005, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 604-623. (2007) Zbl1105.35044MR2274872DOI10.1016/j.na.2005.12.005
  15. Nečas, J., 10.1007/978-3-642-10455-8, Springer Monographs in Mathematics. Springer, Berlin (2012). (2012) Zbl1246.35005MR3014461DOI10.1007/978-3-642-10455-8
  16. Prilepko, A. I., Orlovsky, D. G., Vasin, I. A., 10.1201/9781482292985, Pure and Applied Mathematics, Marcel Dekker 231. Marcel Dekker, New York (2000). (2000) Zbl0947.35173MR1748236DOI10.1201/9781482292985
  17. Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, Mathematics and Its Applications (East European Series) 4. Reidel Publishing, Dordrecht (1982). (1982) Zbl0505.65029MR0689712
  18. Showalter, R. E., 10.1090/surv/049, Mathematical Surveys and Monographs 49. American Mathematical Society, Providence (1997). (1997) Zbl0870.35004MR1422252DOI10.1090/surv/049
  19. Slodička, M., 10.1023/A:1022954920827, Appl. Math., Praha 48 (2003), 49-66. (2003) Zbl1099.65081MR1954503DOI10.1023/A:1022954920827
  20. Slodička, M., 10.1080/17415977.2011.579608, Inverse Probl. Sci. Eng. 19 (2011), 705-716. (2011) Zbl1239.65059MR2819541DOI10.1080/17415977.2011.579608
  21. Bockstal, K. Van, Staelen, R. H. De, Slodička, M., 10.1016/j.cam.2015.02.019, J. Comput. Appl. Math. 289 (2015), 196-207. (2015) Zbl1319.35305MR3350770DOI10.1016/j.cam.2015.02.019
  22. Yin, H.-M., 10.1016/j.jmaa.2004.03.021, J. Math. Anal. Appl. 294 (2004), 712-728. (2004) Zbl1060.35057MR2061353DOI10.1016/j.jmaa.2004.03.021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.