Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition
Applications of Mathematics (2022)
- Volume: 67, Issue: 5, page 573-592
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJo, Yong-Hyok, and Ri, Myong-Hwan. "Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition." Applications of Mathematics 67.5 (2022): 573-592. <http://eudml.org/doc/298485>.
@article{Jo2022,
abstract = {We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value $u_0\in H^1(\Omega )$ is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when $u_0\in L^2(\Omega )$ and the integral kernel in the nonlocal boundary condition is symmetric.},
author = {Jo, Yong-Hyok, Ri, Myong-Hwan},
journal = {Applications of Mathematics},
keywords = {Rothe's method; nonlocal boundary condition; semilinear parabolic equation; inverse source problem},
language = {eng},
number = {5},
pages = {573-592},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition},
url = {http://eudml.org/doc/298485},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Jo, Yong-Hyok
AU - Ri, Myong-Hwan
TI - Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 573
EP - 592
AB - We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value $u_0\in H^1(\Omega )$ is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when $u_0\in L^2(\Omega )$ and the integral kernel in the nonlocal boundary condition is symmetric.
LA - eng
KW - Rothe's method; nonlocal boundary condition; semilinear parabolic equation; inverse source problem
UR - http://eudml.org/doc/298485
ER -
References
top- Azizbayov, E. I., 10.1186/s13661-019-1126-z, Bound. Value Probl. 2019 (2019), Article ID 11, 19 pages. (2019) MR3900856DOI10.1186/s13661-019-1126-z
- Bahuguna, D., Raghavendra, V., 10.1016/0362-546X(94)90252-6, Nonlinear Anal., Theory Methods Appl. 23 (1994), 75-81. (1994) Zbl0810.34054MR1288499DOI10.1016/0362-546X(94)90252-6
- Buda, V., Chegis, R., Sapagovas, M., A model of multiple diffusion from a limited source, Differ. Uravn. Primen. 38 (1986), 9-14 Russian. (1986) Zbl0621.76097
- Carl, S., Lakshmikantham, V., 10.1016/S0022-247X(02)00114-2, J. Math. Anal. Appl. 271 (2002), 182-205. (2002) Zbl1010.65041MR1923755DOI10.1016/S0022-247X(02)00114-2
- Chaoui, A., Guezane-Lakoud, A., 10.1016/j.amc.2015.06.004, Appl. Math. Comput. 266 (2015), 903-908. (2015) Zbl1410.65354MR3377607DOI10.1016/j.amc.2015.06.004
- Cui, M. R., 10.1016/j.amc.2015.03.039, Appl. Math. Comput. 260 (2015), 227-241. (2015) Zbl1410.65304MR3343264DOI10.1016/j.amc.2015.03.039
- Daoud, D. S., 10.1016/j.cam.2007.10.060, J. Comput. Appl. Math. 221 (2008), 261-272. (2008) Zbl1152.65096MR2458768DOI10.1016/j.cam.2007.10.060
- Day, W. A., 10.1090/qam/693879, Q. Appl. Math. 40 (1983), 468-475. (1983) Zbl0514.35038MR0693879DOI10.1090/qam/693879
- Staelen, R. H. De, Slodička, M., 10.1016/j.na.2014.09.002, Nonlinear Anal., Theory Methods Appl., Ser. A 112 (2015), 43-57. (2015) Zbl1302.35435MR3274282DOI10.1016/j.na.2014.09.002
- Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S., 10.1016/j.camwa.2016.01.017, Comput. Math. Appl. 71 (2016), 2301-2312. (2016) Zbl1443.35053MR3501321DOI10.1016/j.camwa.2016.01.017
- Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S., An inverse diffusion coefficient problem for a parabolic equation with integral constraint, Int. J. Numer. Anal. Model. 15 (2018), 552-563. (2018) Zbl1395.35103MR3789578
- Kačur, J., Method of Rothe in Evolution Equations, Teubner Texte zur Mathematik 80. Teubner, Leipzig (1985). (1985) Zbl0582.65084MR0834176
- Kozhanov, A. I., 10.14498/vsgtu308, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 30 (2004), 63-69 Russian. (2004) MR2766545DOI10.14498/vsgtu308
- Merazga, N., Bouziani, A., 10.1016/j.na.2005.12.005, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 604-623. (2007) Zbl1105.35044MR2274872DOI10.1016/j.na.2005.12.005
- Nečas, J., 10.1007/978-3-642-10455-8, Springer Monographs in Mathematics. Springer, Berlin (2012). (2012) Zbl1246.35005MR3014461DOI10.1007/978-3-642-10455-8
- Prilepko, A. I., Orlovsky, D. G., Vasin, I. A., 10.1201/9781482292985, Pure and Applied Mathematics, Marcel Dekker 231. Marcel Dekker, New York (2000). (2000) Zbl0947.35173MR1748236DOI10.1201/9781482292985
- Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, Mathematics and Its Applications (East European Series) 4. Reidel Publishing, Dordrecht (1982). (1982) Zbl0505.65029MR0689712
- Showalter, R. E., 10.1090/surv/049, Mathematical Surveys and Monographs 49. American Mathematical Society, Providence (1997). (1997) Zbl0870.35004MR1422252DOI10.1090/surv/049
- Slodička, M., 10.1023/A:1022954920827, Appl. Math., Praha 48 (2003), 49-66. (2003) Zbl1099.65081MR1954503DOI10.1023/A:1022954920827
- Slodička, M., 10.1080/17415977.2011.579608, Inverse Probl. Sci. Eng. 19 (2011), 705-716. (2011) Zbl1239.65059MR2819541DOI10.1080/17415977.2011.579608
- Bockstal, K. Van, Staelen, R. H. De, Slodička, M., 10.1016/j.cam.2015.02.019, J. Comput. Appl. Math. 289 (2015), 196-207. (2015) Zbl1319.35305MR3350770DOI10.1016/j.cam.2015.02.019
- Yin, H.-M., 10.1016/j.jmaa.2004.03.021, J. Math. Anal. Appl. 294 (2004), 712-728. (2004) Zbl1060.35057MR2061353DOI10.1016/j.jmaa.2004.03.021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.