Absolute value equations with tensor product structure: Unique solvability and numerical solution
Somayeh Mollahasani; Fatemeh Panjeh Ali Beik
Applications of Mathematics (2022)
- Volume: 67, Issue: 5, page 657-674
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMollahasani, Somayeh, and Panjeh Ali Beik, Fatemeh. "Absolute value equations with tensor product structure: Unique solvability and numerical solution." Applications of Mathematics 67.5 (2022): 657-674. <http://eudml.org/doc/298493>.
@article{Mollahasani2022,
abstract = {We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated. The validity of established theoretical results and performance of the proposed iterative scheme are examined numerically. },
author = {Mollahasani, Somayeh, Panjeh Ali Beik, Fatemeh},
journal = {Applications of Mathematics},
keywords = {iterative method; absolute value equation; convergence; tensor (Kronecker) product},
language = {eng},
number = {5},
pages = {657-674},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Absolute value equations with tensor product structure: Unique solvability and numerical solution},
url = {http://eudml.org/doc/298493},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Mollahasani, Somayeh
AU - Panjeh Ali Beik, Fatemeh
TI - Absolute value equations with tensor product structure: Unique solvability and numerical solution
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 657
EP - 674
AB - We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated. The validity of established theoretical results and performance of the proposed iterative scheme are examined numerically.
LA - eng
KW - iterative method; absolute value equation; convergence; tensor (Kronecker) product
UR - http://eudml.org/doc/298493
ER -
References
top- Abdallah, L., Haddou, M., Migot, T., 10.1016/j.cam.2017.06.019, J. Comput. Appl. Math. 327 (2018), 196-207 9999DOI99999 10.1016/j.cam.2017.06.019 . (2018) Zbl1370.90297MR3683155DOI10.1016/j.cam.2017.06.019
- Bader, B. W., Kolda, T. G., MATLAB Tensor Toolbox, Version 2.5, Available at https://www.tensortoolbox.org/ (2012),9999sw99999 04185 . (2012)
- Bai, Z.-Z., Golub, G. H., Ng, M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003), 603-626 9999DOI99999 10.1137/S0895479801395458 . (2003) Zbl1036.65032MR1972670
- Bai, Z.-Z., Yang, X., 10.1016/j.apnum.2009.06.005, Appl. Numer. Math. 59 (2009), 2923-2936. (2009) Zbl1178.65047MR2560825DOI10.1016/j.apnum.2009.06.005
- Beik, F. P. A., Najafi-Kalyani, M., Reichel, L., 10.1016/j.apnum.2020.01.011, Appl. Numer. Math. 151 (2020), 425-447. (2020) Zbl1432.65049MR4055037DOI10.1016/j.apnum.2020.01.011
- Beik, F. P. A., Movahed, F. Saberi, Ahmadi-Asl, S., 10.1002/nla.2033, Numer. Linear Algebra Appl. 23 (2016), 444-466. (2016) Zbl1413.65128MR3484355DOI10.1002/nla.2033
- Dehghan, M., Shirilord, A., 10.1016/j.apnum.2020.08.001, Appl. Numer. Math. 158 (2020), 425-438. (2020) Zbl1451.65048MR4140578DOI10.1016/j.apnum.2020.08.001
- Dong, X., Shao, X.-H., Shen, H.-L., 10.1016/j.apnum.2020.05.013, Appl. Numer. Math. 156 (2020), 410-421. (2020) Zbl1435.65049MR4103787DOI10.1016/j.apnum.2020.05.013
- Guo, P., Wu, S.-L., Li, C.-X., 10.1016/j.aml.2019.03.033, Appl. Math. Lett. 97 (2019), 107-113. (2019) Zbl1437.65044MR3957497DOI10.1016/j.aml.2019.03.033
- Hashemi, B., 10.1016/j.aml.2020.106818, Appl. Math. Lett. 112 (2021), Article ID 106818, 6 pages. (2021) Zbl1459.15016MR4162965DOI10.1016/j.aml.2020.106818
- Higham, N. J., 10.1137/1.9780898718027, SIAM, Philadelphia (2002). (2002) Zbl1011.65010MR1927606DOI10.1137/1.9780898718027
- Huang, B., Ma, C., 10.1080/03081087.2018.1536732, Linear Multilinear Algebra 68 (2020), 1175-1200. (2020) Zbl1453.65084MR4122541DOI10.1080/03081087.2018.1536732
- Huang, B., Ma, C., 10.1016/j.amc.2019.124892, Appl. Math. Comput. 369 (2020), Article ID 124892, 16 pages. (2020) Zbl1433.65046MR4038207DOI10.1016/j.amc.2019.124892
- Ke, Y., 10.1016/j.aml.2019.07.021, Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. (2020) Zbl1468.65049MR3989672DOI10.1016/j.aml.2019.07.021
- Ke, Y.-F., Ma, C.-F., 10.1016/j.amc.2017.05.035, Appl. Math. Comput. 311 (2017), 195-202. (2017) Zbl1426.65048MR3658069DOI10.1016/j.amc.2017.05.035
- Kolda, T. G., Bader, B. W., 10.1137/07070111X, SIAM Rev. 51 (2009), 455-500. (2009) Zbl1173.65029MR2535056DOI10.1137/07070111X
- Lv, C., Ma, C., 10.1016/j.amc.2019.124699, Appl. Math. Comput. 365 (2020), Article ID 124699, 15 pages. (2020) Zbl1433.65055MR4001115DOI10.1016/j.amc.2019.124699
- Mangasarian, O. L., 10.1007/s11590-017-1115-z, Optim. Lett. 11 (2017), 1469-1475. (2017) Zbl1381.90058MR3702953DOI10.1007/s11590-017-1115-z
- Mangasarian, O. L., Meyer, R. R., Absolute value equations, Linear Algebra Appl. 419 (2006), 359-367 9999DOI99999 10.1016/j.laa.2006.05.004 . (2006) Zbl1172.15302MR2277975
- Mansoori, A., Erfanian, M., A dynamic model to solve the absolute value equations, J. Comput. Appl. Math. 333 (2018), 28-35 9999DOI99999 10.1016/j.cam.2017.09.032 . (2018) Zbl1380.65107MR3739937
- Noor, M. A., Iqbal, J., Noor, K. I., Al-Said, E., On an iterative method for solving absolute value equations, Optim. Lett. 6 (2012), 1027-1033 9999DOI99999 10.1007/s11590-011-0332-0 . (2012) Zbl1254.90149MR2925637
- Ren, H., Wang, X., Tang, X.-B., Wang, T., The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems, Comput. Math. Appl. 77 (2019), 1071-1081 9999DOI99999 10.1016/j.camwa.2018.10.040 . (2019) Zbl1442.65112MR3913650
- Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R., An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett. 8 (2014), 35-44 9999DOI99999 10.1007/s11590-012-0560-y . (2014) Zbl1316.90052MR3152897
- Salkuyeh, D. K., 10.1007/s11590-014-0727-9, Optim. Lett. 8 (2014), 2191-2202. (2014) Zbl1335.90102MR3279597DOI10.1007/s11590-014-0727-9
- Shams, N. N., Jahromi, A. Fakharzadeh, Beik, F. P. A., 10.2298/FIL2012171S, Filomat 34 (2020), 4171-4188. (2020) MR4290841DOI10.2298/FIL2012171S
- Wang, L.-M., Li, C.-X., 10.1016/j.aml.2020.106966, Appl. Math. Lett. 116 (2021), Article ID 106966, 5 pages. (2021) Zbl1472.15023MR4201468DOI10.1016/j.aml.2020.106966
- Wang, X., Li, X., Zhang, L.-H., Li, R.-C., An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem, J. Sci. Comput. 79 (2019), 1608-1629 9999DOI99999 10.1007/s10915-019-00907-4 . (2019) Zbl1418.90265MR3946470
- Wu, S.-L., Li, C.-X., The unique solution of the absolute value equations, Appl. Math. Lett. 76 (2018), 195-200 9999DOI99999 10.1016/j.aml.2017.08.012 . (2018) Zbl1397.90381MR3713516
- Wu, S.-L., Li, C.-X., 10.1007/s11590-019-01478-x, Optim. Lett. 14 (2020), 1957-1960. (2020) Zbl1460.15022MR4149779DOI10.1007/s11590-019-01478-x
- Yong, L., 10.1080/09720502.2014.996022, J. Interdiscip. Math. 18 (2015), 355-374. (2015) DOI10.1080/09720502.2014.996022
- Young, D. M., Iterative Solution of Large Linear Systems, Computer Science and Applied Mathematics. Academic Press, New York (1971),9999DOI99999 10.1016/c2013-0-11733-3 . (1971) Zbl0231.65034MR0305568
- Zak, M. K., Toutounian, F., 10.1016/j.camwa.2013.05.004, Comput. Math. Appl. 66 (2013), 269-278. (2013) Zbl1347.65078MR3073338DOI10.1016/j.camwa.2013.05.004
- Zhang, C., Wei, Q. J., 10.1007/s10957-009-9557-9, J. Optim. Theory Appl. 143 (2009), 391-403. (2009) Zbl1175.90418MR2545959DOI10.1007/s10957-009-9557-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.