Absolute value equations with tensor product structure: Unique solvability and numerical solution

Somayeh Mollahasani; Fatemeh Panjeh Ali Beik

Applications of Mathematics (2022)

  • Volume: 67, Issue: 5, page 657-674
  • ISSN: 0862-7940

Abstract

top
We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated.  The validity of established theoretical results and performance of the proposed iterative scheme are examined numerically. 

How to cite

top

Mollahasani, Somayeh, and Panjeh Ali Beik, Fatemeh. "Absolute value equations with tensor product structure: Unique solvability and numerical solution." Applications of Mathematics 67.5 (2022): 657-674. <http://eudml.org/doc/298493>.

@article{Mollahasani2022,
abstract = {We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated.  The validity of established theoretical results and performance of the proposed iterative scheme are examined numerically. },
author = {Mollahasani, Somayeh, Panjeh Ali Beik, Fatemeh},
journal = {Applications of Mathematics},
keywords = {iterative method; absolute value equation; convergence; tensor (Kronecker) product},
language = {eng},
number = {5},
pages = {657-674},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Absolute value equations with tensor product structure: Unique solvability and numerical solution},
url = {http://eudml.org/doc/298493},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Mollahasani, Somayeh
AU - Panjeh Ali Beik, Fatemeh
TI - Absolute value equations with tensor product structure: Unique solvability and numerical solution
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 657
EP - 674
AB - We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated.  The validity of established theoretical results and performance of the proposed iterative scheme are examined numerically. 
LA - eng
KW - iterative method; absolute value equation; convergence; tensor (Kronecker) product
UR - http://eudml.org/doc/298493
ER -

References

top
  1. Abdallah, L., Haddou, M., Migot, T., 10.1016/j.cam.2017.06.019, J. Comput. Appl. Math. 327 (2018), 196-207 9999DOI99999 10.1016/j.cam.2017.06.019 . (2018) Zbl1370.90297MR3683155DOI10.1016/j.cam.2017.06.019
  2. Bader, B. W., Kolda, T. G., MATLAB Tensor Toolbox, Version 2.5, Available at https://www.tensortoolbox.org/ (2012),9999sw99999 04185 . (2012) 
  3. Bai, Z.-Z., Golub, G. H., Ng, M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003), 603-626 9999DOI99999 10.1137/S0895479801395458 . (2003) Zbl1036.65032MR1972670
  4. Bai, Z.-Z., Yang, X., 10.1016/j.apnum.2009.06.005, Appl. Numer. Math. 59 (2009), 2923-2936. (2009) Zbl1178.65047MR2560825DOI10.1016/j.apnum.2009.06.005
  5. Beik, F. P. A., Najafi-Kalyani, M., Reichel, L., 10.1016/j.apnum.2020.01.011, Appl. Numer. Math. 151 (2020), 425-447. (2020) Zbl1432.65049MR4055037DOI10.1016/j.apnum.2020.01.011
  6. Beik, F. P. A., Movahed, F. Saberi, Ahmadi-Asl, S., 10.1002/nla.2033, Numer. Linear Algebra Appl. 23 (2016), 444-466. (2016) Zbl1413.65128MR3484355DOI10.1002/nla.2033
  7. Dehghan, M., Shirilord, A., 10.1016/j.apnum.2020.08.001, Appl. Numer. Math. 158 (2020), 425-438. (2020) Zbl1451.65048MR4140578DOI10.1016/j.apnum.2020.08.001
  8. Dong, X., Shao, X.-H., Shen, H.-L., 10.1016/j.apnum.2020.05.013, Appl. Numer. Math. 156 (2020), 410-421. (2020) Zbl1435.65049MR4103787DOI10.1016/j.apnum.2020.05.013
  9. Guo, P., Wu, S.-L., Li, C.-X., 10.1016/j.aml.2019.03.033, Appl. Math. Lett. 97 (2019), 107-113. (2019) Zbl1437.65044MR3957497DOI10.1016/j.aml.2019.03.033
  10. Hashemi, B., 10.1016/j.aml.2020.106818, Appl. Math. Lett. 112 (2021), Article ID 106818, 6 pages. (2021) Zbl1459.15016MR4162965DOI10.1016/j.aml.2020.106818
  11. Higham, N. J., 10.1137/1.9780898718027, SIAM, Philadelphia (2002). (2002) Zbl1011.65010MR1927606DOI10.1137/1.9780898718027
  12. Huang, B., Ma, C., 10.1080/03081087.2018.1536732, Linear Multilinear Algebra 68 (2020), 1175-1200. (2020) Zbl1453.65084MR4122541DOI10.1080/03081087.2018.1536732
  13. Huang, B., Ma, C., 10.1016/j.amc.2019.124892, Appl. Math. Comput. 369 (2020), Article ID 124892, 16 pages. (2020) Zbl1433.65046MR4038207DOI10.1016/j.amc.2019.124892
  14. Ke, Y., 10.1016/j.aml.2019.07.021, Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. (2020) Zbl1468.65049MR3989672DOI10.1016/j.aml.2019.07.021
  15. Ke, Y.-F., Ma, C.-F., 10.1016/j.amc.2017.05.035, Appl. Math. Comput. 311 (2017), 195-202. (2017) Zbl1426.65048MR3658069DOI10.1016/j.amc.2017.05.035
  16. Kolda, T. G., Bader, B. W., 10.1137/07070111X, SIAM Rev. 51 (2009), 455-500. (2009) Zbl1173.65029MR2535056DOI10.1137/07070111X
  17. Lv, C., Ma, C., 10.1016/j.amc.2019.124699, Appl. Math. Comput. 365 (2020), Article ID 124699, 15 pages. (2020) Zbl1433.65055MR4001115DOI10.1016/j.amc.2019.124699
  18. Mangasarian, O. L., 10.1007/s11590-017-1115-z, Optim. Lett. 11 (2017), 1469-1475. (2017) Zbl1381.90058MR3702953DOI10.1007/s11590-017-1115-z
  19. Mangasarian, O. L., Meyer, R. R., Absolute value equations, Linear Algebra Appl. 419 (2006), 359-367 9999DOI99999 10.1016/j.laa.2006.05.004 . (2006) Zbl1172.15302MR2277975
  20. Mansoori, A., Erfanian, M., A dynamic model to solve the absolute value equations, J. Comput. Appl. Math. 333 (2018), 28-35 9999DOI99999 10.1016/j.cam.2017.09.032 . (2018) Zbl1380.65107MR3739937
  21. Noor, M. A., Iqbal, J., Noor, K. I., Al-Said, E., On an iterative method for solving absolute value equations, Optim. Lett. 6 (2012), 1027-1033 9999DOI99999 10.1007/s11590-011-0332-0 . (2012) Zbl1254.90149MR2925637
  22. Ren, H., Wang, X., Tang, X.-B., Wang, T., The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems, Comput. Math. Appl. 77 (2019), 1071-1081 9999DOI99999 10.1016/j.camwa.2018.10.040 . (2019) Zbl1442.65112MR3913650
  23. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R., An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett. 8 (2014), 35-44 9999DOI99999 10.1007/s11590-012-0560-y . (2014) Zbl1316.90052MR3152897
  24. Salkuyeh, D. K., 10.1007/s11590-014-0727-9, Optim. Lett. 8 (2014), 2191-2202. (2014) Zbl1335.90102MR3279597DOI10.1007/s11590-014-0727-9
  25. Shams, N. N., Jahromi, A. Fakharzadeh, Beik, F. P. A., 10.2298/FIL2012171S, Filomat 34 (2020), 4171-4188. (2020) MR4290841DOI10.2298/FIL2012171S
  26. Wang, L.-M., Li, C.-X., 10.1016/j.aml.2020.106966, Appl. Math. Lett. 116 (2021), Article ID 106966, 5 pages. (2021) Zbl1472.15023MR4201468DOI10.1016/j.aml.2020.106966
  27. Wang, X., Li, X., Zhang, L.-H., Li, R.-C., An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem, J. Sci. Comput. 79 (2019), 1608-1629 9999DOI99999 10.1007/s10915-019-00907-4 . (2019) Zbl1418.90265MR3946470
  28. Wu, S.-L., Li, C.-X., The unique solution of the absolute value equations, Appl. Math. Lett. 76 (2018), 195-200 9999DOI99999 10.1016/j.aml.2017.08.012 . (2018) Zbl1397.90381MR3713516
  29. Wu, S.-L., Li, C.-X., 10.1007/s11590-019-01478-x, Optim. Lett. 14 (2020), 1957-1960. (2020) Zbl1460.15022MR4149779DOI10.1007/s11590-019-01478-x
  30. Yong, L., 10.1080/09720502.2014.996022, J. Interdiscip. Math. 18 (2015), 355-374. (2015) DOI10.1080/09720502.2014.996022
  31. Young, D. M., Iterative Solution of Large Linear Systems, Computer Science and Applied Mathematics. Academic Press, New York (1971),9999DOI99999 10.1016/c2013-0-11733-3 . (1971) Zbl0231.65034MR0305568
  32. Zak, M. K., Toutounian, F., 10.1016/j.camwa.2013.05.004, Comput. Math. Appl. 66 (2013), 269-278. (2013) Zbl1347.65078MR3073338DOI10.1016/j.camwa.2013.05.004
  33. Zhang, C., Wei, Q. J., 10.1007/s10957-009-9557-9, J. Optim. Theory Appl. 143 (2009), 391-403. (2009) Zbl1175.90418MR2545959DOI10.1007/s10957-009-9557-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.