On Beurling measure algebras

Ross Stokke

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 2, page 169-187
  • ISSN: 0010-2628

Abstract

top
We show how the measure theory of regular compacted-Borel measures defined on the δ -ring of compacted-Borel subsets of a weighted locally compact group ( G , ω ) provides a compatible framework for defining the corresponding Beurling measure algebra ( G , ω ) , thus filling a gap in the literature.

How to cite

top

Stokke, Ross. "On Beurling measure algebras." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 169-187. <http://eudml.org/doc/298503>.

@article{Stokke2022,
abstract = {We show how the measure theory of regular compacted-Borel measures defined on the $\delta $-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega )$ provides a compatible framework for defining the corresponding Beurling measure algebra $\{\mathcal \{M\}\}(G,\omega )$, thus filling a gap in the literature.},
author = {Stokke, Ross},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted locally compact group; group algebra; measure algebra; Beurling algebra},
language = {eng},
number = {2},
pages = {169-187},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Beurling measure algebras},
url = {http://eudml.org/doc/298503},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Stokke, Ross
TI - On Beurling measure algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 169
EP - 187
AB - We show how the measure theory of regular compacted-Borel measures defined on the $\delta $-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega )$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\mathcal {M}}(G,\omega )$, thus filling a gap in the literature.
LA - eng
KW - weighted locally compact group; group algebra; measure algebra; Beurling algebra
UR - http://eudml.org/doc/298503
ER -

References

top
  1. Bonsall F. F., Duncan J., Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer, New York, 1973. Zbl0271.46039MR0423029
  2. Dales H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24; Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR1816726
  3. Dales H. G., Lau A. T.-M., The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836, vi + 191 pages. MR2155972
  4. Fell J. M. G., Doran R. S., Representations of * -algebras, Locally Compact Groups, and Banach * -algebraic Bundles, Vol. 1, Basic Representation Theory of Groups and Algebras, Pure and Applied Mathematics, 125, Academic Press, Boston, 1988. MR0936628
  5. Ghahramani F., 10.2140/pjm.1984.113.77, Pacific J. Math. 113 (1984), no. 1, 77–84. MR0745596DOI10.2140/pjm.1984.113.77
  6. Ghahramani F., 10.1090/S0002-9939-1984-0722417-9, Proc. Amer. Math. Soc. 90 (1984), no. 1, 71–76. MR0722417DOI10.1090/S0002-9939-1984-0722417-9
  7. Ghahramani F., Zadeh S., 10.4153/CJM-2016-028-5, Canad. J. Math. 69 (2017), no. 1, 3–20. MR3589852DOI10.4153/CJM-2016-028-5
  8. Grønbæk N., 10.1090/S0002-9947-1990-0962282-5, Trans. Amer. Math. Soc. 319 (1990), no. 2, 765–775. MR0962282DOI10.1090/S0002-9947-1990-0962282-5
  9. Hewitt E., Ross K. A., Abstract Harmonic Analysis, Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, New York; Springer, Berlin, 1963. MR0156915
  10. Ilie M., Stokke R., 10.1017/S0305004108001199, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 107–120. MR2431642DOI10.1017/S0305004108001199
  11. Kaniuth E., 10.1007/978-0-387-72476-8, Graduate Texts in Mathematics, 246, Springer, New York, 2009. MR2458901DOI10.1007/978-0-387-72476-8
  12. Kroeker M. E., Stephens A., Stokke R., Yee R., 10.1016/j.jmaa.2021.125935, J. Math. Anal. Appl. 509 (2022), no. 1, Paper No. 125935, 25 pages. MR4355933DOI10.1016/j.jmaa.2021.125935
  13. Lau A. T.-M., 10.4064/cm-39-2-351-359, Colloq. Math. 39 (1978), no. 2, 351–359. MR0522378DOI10.4064/cm-39-2-351-359
  14. Palmer T. W., Banach Algebras and the General Theory of * -algebras, Vol. I., Algebras and Banach algebras, Encyclopedia of Mathematics and Its Applications, 49, Cambridge University Press, Cambridge, 1994. MR1270014
  15. Reiter H., Stegeman J. D., Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society Monographs, New Series, 22, The Clarendon Press, Oxford University Press, New York, 2000. MR1802924
  16. Runde V., 10.7146/math.scand.a-14452, Math. Scand. 95 (2004), no. 1, 124–144. MR2091485DOI10.7146/math.scand.a-14452
  17. Samei E., 10.1016/j.jmaa.2008.05.085, J. Math. Anal. Appl. 346 (2008), no. 2, 451–467. MR2431541DOI10.1016/j.jmaa.2008.05.085
  18. Shepelska V., Zhang Y., 10.1512/iumj.2018.67.6287, Indiana Univ. Math. J. 67 (2018), no. 1, 119–150. MR3776016DOI10.1512/iumj.2018.67.6287
  19. Zadeh S., Isomorphisms of Banach Algebras Associated with Locally Compact Groups, PhD Thesis, University of Manitoba, Canada, 2015. 
  20. Zadeh S., 10.1016/j.jmaa.2016.01.060, J. Math. Anal. Appl. 438 (2016), no. 1, 1–13. MR3462562DOI10.1016/j.jmaa.2016.01.060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.