On Beurling measure algebras
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 2, page 169-187
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topStokke, Ross. "On Beurling measure algebras." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 169-187. <http://eudml.org/doc/298503>.
@article{Stokke2022,
abstract = {We show how the measure theory of regular compacted-Borel measures defined on the $\delta $-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega )$ provides a compatible framework for defining the corresponding Beurling measure algebra $\{\mathcal \{M\}\}(G,\omega )$, thus filling a gap in the literature.},
author = {Stokke, Ross},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted locally compact group; group algebra; measure algebra; Beurling algebra},
language = {eng},
number = {2},
pages = {169-187},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Beurling measure algebras},
url = {http://eudml.org/doc/298503},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Stokke, Ross
TI - On Beurling measure algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 169
EP - 187
AB - We show how the measure theory of regular compacted-Borel measures defined on the $\delta $-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega )$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\mathcal {M}}(G,\omega )$, thus filling a gap in the literature.
LA - eng
KW - weighted locally compact group; group algebra; measure algebra; Beurling algebra
UR - http://eudml.org/doc/298503
ER -
References
top- Bonsall F. F., Duncan J., Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer, New York, 1973. Zbl0271.46039MR0423029
- Dales H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24; Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR1816726
- Dales H. G., Lau A. T.-M., The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836, vi + 191 pages. MR2155972
- Fell J. M. G., Doran R. S., Representations of -algebras, Locally Compact Groups, and Banach -algebraic Bundles, Vol. 1, Basic Representation Theory of Groups and Algebras, Pure and Applied Mathematics, 125, Academic Press, Boston, 1988. MR0936628
- Ghahramani F., 10.2140/pjm.1984.113.77, Pacific J. Math. 113 (1984), no. 1, 77–84. MR0745596DOI10.2140/pjm.1984.113.77
- Ghahramani F., 10.1090/S0002-9939-1984-0722417-9, Proc. Amer. Math. Soc. 90 (1984), no. 1, 71–76. MR0722417DOI10.1090/S0002-9939-1984-0722417-9
- Ghahramani F., Zadeh S., 10.4153/CJM-2016-028-5, Canad. J. Math. 69 (2017), no. 1, 3–20. MR3589852DOI10.4153/CJM-2016-028-5
- Grønbæk N., 10.1090/S0002-9947-1990-0962282-5, Trans. Amer. Math. Soc. 319 (1990), no. 2, 765–775. MR0962282DOI10.1090/S0002-9947-1990-0962282-5
- Hewitt E., Ross K. A., Abstract Harmonic Analysis, Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, New York; Springer, Berlin, 1963. MR0156915
- Ilie M., Stokke R., 10.1017/S0305004108001199, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 107–120. MR2431642DOI10.1017/S0305004108001199
- Kaniuth E., 10.1007/978-0-387-72476-8, Graduate Texts in Mathematics, 246, Springer, New York, 2009. MR2458901DOI10.1007/978-0-387-72476-8
- Kroeker M. E., Stephens A., Stokke R., Yee R., 10.1016/j.jmaa.2021.125935, J. Math. Anal. Appl. 509 (2022), no. 1, Paper No. 125935, 25 pages. MR4355933DOI10.1016/j.jmaa.2021.125935
- Lau A. T.-M., 10.4064/cm-39-2-351-359, Colloq. Math. 39 (1978), no. 2, 351–359. MR0522378DOI10.4064/cm-39-2-351-359
- Palmer T. W., Banach Algebras and the General Theory of -algebras, Vol. I., Algebras and Banach algebras, Encyclopedia of Mathematics and Its Applications, 49, Cambridge University Press, Cambridge, 1994. MR1270014
- Reiter H., Stegeman J. D., Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society Monographs, New Series, 22, The Clarendon Press, Oxford University Press, New York, 2000. MR1802924
- Runde V., 10.7146/math.scand.a-14452, Math. Scand. 95 (2004), no. 1, 124–144. MR2091485DOI10.7146/math.scand.a-14452
- Samei E., 10.1016/j.jmaa.2008.05.085, J. Math. Anal. Appl. 346 (2008), no. 2, 451–467. MR2431541DOI10.1016/j.jmaa.2008.05.085
- Shepelska V., Zhang Y., 10.1512/iumj.2018.67.6287, Indiana Univ. Math. J. 67 (2018), no. 1, 119–150. MR3776016DOI10.1512/iumj.2018.67.6287
- Zadeh S., Isomorphisms of Banach Algebras Associated with Locally Compact Groups, PhD Thesis, University of Manitoba, Canada, 2015.
- Zadeh S., 10.1016/j.jmaa.2016.01.060, J. Math. Anal. Appl. 438 (2016), no. 1, 1–13. MR3462562DOI10.1016/j.jmaa.2016.01.060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.