Analysis of pattern formation using numerical continuation
Applications of Mathematics (2022)
- Volume: 67, Issue: 6, page 705-726
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJanovský, Vladimír. "Analysis of pattern formation using numerical continuation." Applications of Mathematics 67.6 (2022): 705-726. <http://eudml.org/doc/298511>.
@article{Janovský2022,
abstract = {The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter $L$, which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.},
author = {Janovský, Vladimír},
journal = {Applications of Mathematics},
keywords = {pattern formation; reaction-diffusion model; Turing instability; diffusion-driven instability; bifurcation},
language = {eng},
number = {6},
pages = {705-726},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Analysis of pattern formation using numerical continuation},
url = {http://eudml.org/doc/298511},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Janovský, Vladimír
TI - Analysis of pattern formation using numerical continuation
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 705
EP - 726
AB - The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter $L$, which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.
LA - eng
KW - pattern formation; reaction-diffusion model; Turing instability; diffusion-driven instability; bifurcation
UR - http://eudml.org/doc/298511
ER -
References
top- Allgower, E. L., Georg, K., 10.1137/1.9780898719154, Classics in Applied Mathematics 45. SIAM, Philadelphia (2003). (2003) Zbl1036.65047MR2001018DOI10.1137/1.9780898719154
- Baker, R. E., Gaffney, E. A., Maini, P. K., 10.1088/0951-7715/21/11/R05, Nonlinearity 21 (2008), R251--R290. (2008) Zbl1159.35003MR2448226DOI10.1088/0951-7715/21/11/R05
- Böhmer, K., Govaerts, W., Janovský, V., 10.1090/S0025-5718-99-01052-2, Math. Comput. 68 (1999), 1097-1108. (1999) Zbl0918.65039MR1627846DOI10.1090/S0025-5718-99-01052-2
- Chossat, P., Lauterbach, R., 10.1142/4062, Advanced Series in Nonlinear Dynamics 15. World Scientific, Singapore (2000). (2000) Zbl0968.37001MR1831950DOI10.1142/4062
- Dhooge, A., Govaerts, W., Kuznetsov, Y. A., 10.1145/779359.779362, ACM Trans. Math. Softw. 29 (2003), 141-164. (2003) Zbl1070.65574MR2000880DOI10.1145/779359.779362
- Dhooge, A., Govaerts, W., Kuznetsov, Y. A., MATCONT and CLMATCONT: Continuation Toolboxes in MATLAB, University Gent, Gent (2011). (2011)
- Gierer, A., Meinhardt, H., 10.1007/BF00289234, Kybernetik 12 (1972), 30-39. (1972) Zbl1434.92013DOI10.1007/BF00289234
- Golubitsky, M., Schaeffer, D. G., 10.1007/978-1-4612-5034-0, Applied Mathematical Sciences 51. Springer, New York (1985). (1985) Zbl0607.35004MR0771477DOI10.1007/978-1-4612-5034-0
- Golubitsky, M., Stewart, I., Schaeffer, D. G., 10.1007/978-1-4612-4574-2, Applied Mathematical Sciences 69. Springer, New York (1988). (1988) Zbl0691.58003MR0950168DOI10.1007/978-1-4612-4574-2
- Govaerts, W. J. F., 10.1137/1.9780898719543, SIAM, Philadelphia (2000). (2000) Zbl0935.37054MR1736704DOI10.1137/1.9780898719543
- Janovský, V., Plecháč, P., Numerical applications of equivariant reduction techniques, Bifurcation and Symmetry: Cross Influence Between Mathematics and Applications International Series of Numerical Mathematics 104. Birkhäuser, Basel (1992), 203-213. (1992) Zbl0764.65031MR1248618
- Klika, V., 10.1063/1.4985256, Chaos 27 (2017), Article ID 073120, 9 pages. (2017) Zbl1390.92021MR3679679DOI10.1063/1.4985256
- Klika, V., Baker, R. E., Headon, D., Gaffney, E. A., 10.1007/s11538-011-9699-4, Bull. Math. Biol. 74 (2012), 935-957. (2012) Zbl1235.92010MR2903016DOI10.1007/s11538-011-9699-4
- Klika, V., Kozák, M., Gaffney, E. A., 10.1137/17M1138571, SIAM J. Appl. Math. 78 (2018), 2298-2322. (2018) Zbl1396.35035MR3850305DOI10.1137/17M1138571
- Kuznetsov, Y. A., 10.1007/b98848, Applied Mathematical Sciences 112. Springer, New York (1998). (1998) Zbl0914.58025MR1711790DOI10.1007/b98848
- Marciniak-Czochra, A., Karch, G., Suzuki, K., 10.1007/s00285-016-1035-z, J. Math. Biol. 74 (2017), 583-618. (2017) Zbl1356.35043MR3600397DOI10.1007/s00285-016-1035-z
- Murray, J. D., 10.1007/b98869, Interdisciplinary Applied Mathematics 18. Springer, New York (2003). (2003) Zbl1006.92002MR1952568DOI10.1007/b98869
- Schnakenberg, J., 10.1016/0022-5193(79)90042-0, J. Theoret. Biol. 81 (1979), 389-400. (1979) MR0558661DOI10.1016/0022-5193(79)90042-0
- Trefethen, L. N., Embree, M., Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton (2005). (2005) Zbl1085.15009MR2155029
- Turing, A. M., 10.1098/rstb.1952.0012, Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 237 (1952), 37-72. (1952) Zbl1403.92034MR3363444DOI10.1098/rstb.1952.0012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.