Analysis of pattern formation using numerical continuation

Vladimír Janovský

Applications of Mathematics (2022)

  • Volume: 67, Issue: 6, page 705-726
  • ISSN: 0862-7940

Abstract

top
The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter L , which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.

How to cite

top

Janovský, Vladimír. "Analysis of pattern formation using numerical continuation." Applications of Mathematics 67.6 (2022): 705-726. <http://eudml.org/doc/298511>.

@article{Janovský2022,
abstract = {The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter $L$, which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.},
author = {Janovský, Vladimír},
journal = {Applications of Mathematics},
keywords = {pattern formation; reaction-diffusion model; Turing instability; diffusion-driven instability; bifurcation},
language = {eng},
number = {6},
pages = {705-726},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Analysis of pattern formation using numerical continuation},
url = {http://eudml.org/doc/298511},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Janovský, Vladimír
TI - Analysis of pattern formation using numerical continuation
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 705
EP - 726
AB - The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter $L$, which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.
LA - eng
KW - pattern formation; reaction-diffusion model; Turing instability; diffusion-driven instability; bifurcation
UR - http://eudml.org/doc/298511
ER -

References

top
  1. Allgower, E. L., Georg, K., 10.1137/1.9780898719154, Classics in Applied Mathematics 45. SIAM, Philadelphia (2003). (2003) Zbl1036.65047MR2001018DOI10.1137/1.9780898719154
  2. Baker, R. E., Gaffney, E. A., Maini, P. K., 10.1088/0951-7715/21/11/R05, Nonlinearity 21 (2008), R251--R290. (2008) Zbl1159.35003MR2448226DOI10.1088/0951-7715/21/11/R05
  3. Böhmer, K., Govaerts, W., Janovský, V., 10.1090/S0025-5718-99-01052-2, Math. Comput. 68 (1999), 1097-1108. (1999) Zbl0918.65039MR1627846DOI10.1090/S0025-5718-99-01052-2
  4. Chossat, P., Lauterbach, R., 10.1142/4062, Advanced Series in Nonlinear Dynamics 15. World Scientific, Singapore (2000). (2000) Zbl0968.37001MR1831950DOI10.1142/4062
  5. Dhooge, A., Govaerts, W., Kuznetsov, Y. A., 10.1145/779359.779362, ACM Trans. Math. Softw. 29 (2003), 141-164. (2003) Zbl1070.65574MR2000880DOI10.1145/779359.779362
  6. Dhooge, A., Govaerts, W., Kuznetsov, Y. A., MATCONT and CL - MATCONT: Continuation Toolboxes in MATLAB, University Gent, Gent (2011). (2011) 
  7. Gierer, A., Meinhardt, H., 10.1007/BF00289234, Kybernetik 12 (1972), 30-39. (1972) Zbl1434.92013DOI10.1007/BF00289234
  8. Golubitsky, M., Schaeffer, D. G., 10.1007/978-1-4612-5034-0, Applied Mathematical Sciences 51. Springer, New York (1985). (1985) Zbl0607.35004MR0771477DOI10.1007/978-1-4612-5034-0
  9. Golubitsky, M., Stewart, I., Schaeffer, D. G., 10.1007/978-1-4612-4574-2, Applied Mathematical Sciences 69. Springer, New York (1988). (1988) Zbl0691.58003MR0950168DOI10.1007/978-1-4612-4574-2
  10. Govaerts, W. J. F., 10.1137/1.9780898719543, SIAM, Philadelphia (2000). (2000) Zbl0935.37054MR1736704DOI10.1137/1.9780898719543
  11. Janovský, V., Plecháč, P., Numerical applications of equivariant reduction techniques, Bifurcation and Symmetry: Cross Influence Between Mathematics and Applications International Series of Numerical Mathematics 104. Birkhäuser, Basel (1992), 203-213. (1992) Zbl0764.65031MR1248618
  12. Klika, V., 10.1063/1.4985256, Chaos 27 (2017), Article ID 073120, 9 pages. (2017) Zbl1390.92021MR3679679DOI10.1063/1.4985256
  13. Klika, V., Baker, R. E., Headon, D., Gaffney, E. A., 10.1007/s11538-011-9699-4, Bull. Math. Biol. 74 (2012), 935-957. (2012) Zbl1235.92010MR2903016DOI10.1007/s11538-011-9699-4
  14. Klika, V., Kozák, M., Gaffney, E. A., 10.1137/17M1138571, SIAM J. Appl. Math. 78 (2018), 2298-2322. (2018) Zbl1396.35035MR3850305DOI10.1137/17M1138571
  15. Kuznetsov, Y. A., 10.1007/b98848, Applied Mathematical Sciences 112. Springer, New York (1998). (1998) Zbl0914.58025MR1711790DOI10.1007/b98848
  16. Marciniak-Czochra, A., Karch, G., Suzuki, K., 10.1007/s00285-016-1035-z, J. Math. Biol. 74 (2017), 583-618. (2017) Zbl1356.35043MR3600397DOI10.1007/s00285-016-1035-z
  17. Murray, J. D., 10.1007/b98869, Interdisciplinary Applied Mathematics 18. Springer, New York (2003). (2003) Zbl1006.92002MR1952568DOI10.1007/b98869
  18. Schnakenberg, J., 10.1016/0022-5193(79)90042-0, J. Theoret. Biol. 81 (1979), 389-400. (1979) MR0558661DOI10.1016/0022-5193(79)90042-0
  19. Trefethen, L. N., Embree, M., Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton (2005). (2005) Zbl1085.15009MR2155029
  20. Turing, A. M., 10.1098/rstb.1952.0012, Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 237 (1952), 37-72. (1952) Zbl1403.92034MR3363444DOI10.1098/rstb.1952.0012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.