Self-small products of abelian groups
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 2, page 145-157
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDvořák, Josef, and Žemlička, Jan. "Self-small products of abelian groups." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 145-157. <http://eudml.org/doc/298512>.
@article{Dvořák2022,
abstract = {Let $A$ and $B$ be two abelian groups. The group $A$ is called $B$-small if the covariant functor $\{\rm Hom\}(A,-)$ commutes with all direct sums $B^\{(\kappa )\}$ and $A$ is self-small provided it is $A$-small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.},
author = {Dvořák, Josef, Žemlička, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {self-small abelian group; slender group},
language = {eng},
number = {2},
pages = {145-157},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Self-small products of abelian groups},
url = {http://eudml.org/doc/298512},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Dvořák, Josef
AU - Žemlička, Jan
TI - Self-small products of abelian groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 145
EP - 157
AB - Let $A$ and $B$ be two abelian groups. The group $A$ is called $B$-small if the covariant functor ${\rm Hom}(A,-)$ commutes with all direct sums $B^{(\kappa )}$ and $A$ is self-small provided it is $A$-small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.
LA - eng
KW - self-small abelian group; slender group
UR - http://eudml.org/doc/298512
ER -
References
top- Albrecht U., Breaz S., 10.1142/S0219498813500734, J. Algebra Appl. 13 (2014), no. 1, 1350073, 8 pages. MR3096854DOI10.1142/S0219498813500734
- Albrecht U., Breaz S., Schultz P., Functorial properties of Hom and Ext, in: Groups and Model Theory, Contemp. Math., 576, Amer. Math. Soc., Providence, 2012, pages 1–15. MR2962871
- Albrecht U., Breaz S., Wickless W., 10.1080/00927870701509545, Comm. Algebra 35 (2007), no. 11, 3789–3807. MR2362684DOI10.1080/00927870701509545
- Albrecht U., Breaz S., Wickless W., 10.1017/S0004972709000185, Bull. Aust. Math. Soc. 80 (2009), no. 2, 205–216. MR2540354DOI10.1017/S0004972709000185
- Arnold D. M., Murley C. E., 10.2140/pjm.1975.56.7, Pacific J. Math. 56 (1975), no. 1, 7–20. MR0376901DOI10.2140/pjm.1975.56.7
- Bass H., Algebraic -theory, Mathematics Lecture Note Series, W. A. Benjamin, New York, 1968. MR0249491
- Breaz S., 10.1081/AGB-120023139, Comm. Algebra 31 (2003), no. 10, 4911–4924. MR1998035DOI10.1081/AGB-120023139
- Breaz S., 10.4171/RSMUP/56, Rend. Semin. Mat. Univ. Padova 144 (2020), 61–71. MR4186446DOI10.4171/RSMUP/56
- Breaz S., Schultz P., 10.1090/S0002-9939-2011-10919-5, Proc. Amer. Math. Soc. 140 (2012), no. 1, 69–82. MR2833518DOI10.1090/S0002-9939-2011-10919-5
- Breaz S., Žemlička J., 10.1016/j.jalgebra.2007.01.037, J. Algebra 315 (2007), no. 2, 885–893. MR2351899DOI10.1016/j.jalgebra.2007.01.037
- Colpi R., Menini C., 10.1006/jabr.1993.1138, J. Algebra 158 (1993), no. 2, 400–419. MR1226797DOI10.1006/jabr.1993.1138
- Dvořák J., On products of self-small abelian groups, Stud. Univ. Babeş–Bolyai Math. 60 (2015), no. 1, 13–17. MR3335780
- Dvořák J., Žemlička J., Autocompact objects of Ab5 categories, Theory Appl. Categ. 37 (2021), Paper No. 30, 979–995. MR4326106
- Fuchs L., Infinite Abelian Groups. Vol. I, Pure and Applied Mathematics, 36, Academic Press, New York, 1970. Zbl0338.20063MR0255673
- Fuchs L., Infinite Abelian Groups. Vol. II, Pure and Applied Mathematics, 36-II, Academic Press, New York, 1973. MR0349869
- Gómez Pardo J. L., Militaru G., Năstăsescu C., When is equal to in the category ?, Comm. Algebra 22 (1994), no. 8, 3171–3181. MR1272380
- Kálnai P., Žemlička J., 10.1016/j.jalgebra.2019.05.037, J. Algebra 534 (2019), 273–288. MR3979075DOI10.1016/j.jalgebra.2019.05.037
- Modoi G. C., 10.24193/subbmath.2019.1.01, Stud. Univ. Babeş–Bolyai Math. 64 (2019), no. 1, 3–10. MR3928597DOI10.24193/subbmath.2019.1.01
- Rentschler R., Sur les modules tels que commute avec les sommes directes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A930–A933 (French). MR0241466
- Žemlička J., 10.1080/00927870802070207, Comm. Algebra 36 (2008), no. 7, 2570–2576. MR2422503DOI10.1080/00927870802070207
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.