On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations

Jiří Egermaier; Hana Horníková

Applications of Mathematics (2022)

  • Volume: 67, Issue: 6, page 751-774
  • ISSN: 0862-7940

Abstract

top
In this paper, we deal with the optimal choice of the parameter γ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter γ for various problem parameters (Reynolds number, mesh refinement) and especially for various isogeometric discretizations (degree and interelement continuity of the B-spline discretization bases). The idea is to be able to determine the optimal value of γ for a problem that is relatively cheap to compute and, based on this value, predict suitable values for other problems, e.g., with finer mesh, different discretization, etc. The influence of inner solvers (direct or iterative based on multigrid method) is also discussed.

How to cite

top

Egermaier, Jiří, and Horníková, Hana. "On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations." Applications of Mathematics 67.6 (2022): 751-774. <http://eudml.org/doc/298515>.

@article{Egermaier2022,
abstract = {In this paper, we deal with the optimal choice of the parameter $\gamma $ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter $\gamma $ for various problem parameters (Reynolds number, mesh refinement) and especially for various isogeometric discretizations (degree and interelement continuity of the B-spline discretization bases). The idea is to be able to determine the optimal value of $\gamma $ for a problem that is relatively cheap to compute and, based on this value, predict suitable values for other problems, e.g., with finer mesh, different discretization, etc. The influence of inner solvers (direct or iterative based on multigrid method) is also discussed.},
author = {Egermaier, Jiří, Horníková, Hana},
journal = {Applications of Mathematics},
keywords = {isogeometric analysis; augmented Lagrangian preconditioner; Navier-Stokes equations},
language = {eng},
number = {6},
pages = {751-774},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations},
url = {http://eudml.org/doc/298515},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Egermaier, Jiří
AU - Horníková, Hana
TI - On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 751
EP - 774
AB - In this paper, we deal with the optimal choice of the parameter $\gamma $ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter $\gamma $ for various problem parameters (Reynolds number, mesh refinement) and especially for various isogeometric discretizations (degree and interelement continuity of the B-spline discretization bases). The idea is to be able to determine the optimal value of $\gamma $ for a problem that is relatively cheap to compute and, based on this value, predict suitable values for other problems, e.g., with finer mesh, different discretization, etc. The influence of inner solvers (direct or iterative based on multigrid method) is also discussed.
LA - eng
KW - isogeometric analysis; augmented Lagrangian preconditioner; Navier-Stokes equations
UR - http://eudml.org/doc/298515
ER -

References

top
  1. Bastl, B., Brandner, M., Egermaier, J., Horníková, H., Michálková, K., Turnerová, E., 10.14311/AP.2021.61.0033, Acta Polytech., Pr. ČVUT Praha 61 (2021), 33-48. (2021) DOI10.14311/AP.2021.61.0033
  2. Bastl, B., Brandner, M., Egermaier, J., Michálková, K., Turnerová, E., 10.1016/j.matcom.2016.05.010, Math. Comput. Simul. 145 (2018), 3-17. (2018) Zbl07316162MR3725796DOI10.1016/j.matcom.2016.05.010
  3. Benzi, M., Olshanskii, M. A., 10.1137/050646421, SIAM J. Sci. Comput. 28 (2006), 2095-2113. (2006) Zbl1126.76028MR2272253DOI10.1137/050646421
  4. Benzi, M., Olshanskii, M. A., Wang, Z., 10.1002/fld.2267, Int. J. Numer. Methods Fluids 66 (2011), 486-508. (2011) Zbl1421.76152MR2827781DOI10.1002/fld.2267
  5. Cottrell, J. A., Hughes, T. J. R., Bazilevs, Y., 10.1002/9780470749081, John Wiley & Sons, Hoboken (2009). (2009) Zbl1378.65009MR3618875DOI10.1002/9780470749081
  6. Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., Tuminaro, R., 10.1137/040608817, SIAM J. Sci. Comput. 27 (2006), 1651-1668. (2006) Zbl1100.65042MR2206507DOI10.1137/040608817
  7. Elman, H., Silvester, D. J., Wathen, A. J., 10.1093/acprof:oso/9780199678792.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). (2014) Zbl1304.76002MR3235759DOI10.1093/acprof:oso/9780199678792.001.0001
  8. Farrell, P. E., Mitchell, L., Wechsung, F., 10.1137/18M1219370, SIAM J. Sci. Comput. 41 (2019), A3073–A3096 9999DOI99999 10.1137/18M1219370 . (2019) Zbl1448.65261MR4016136DOI10.1137/18M1219370
  9. Guennebaud, G., Jacob, B., Eigen v3, Available at http://eigen.tuxfamily.org (2010). (2010) 
  10. Horníková, H., Vuik, C., Egermaier, J., A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids 93 (2021), 1788-1815 9999DOI99999 10.1002/fld.4952 . (2021) MR4252626
  11. Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y., 10.1016/j.cma.2004.10.008, Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195. (2005) Zbl1151.74419MR2152382DOI10.1016/j.cma.2004.10.008
  12. Kay, D., Loghin, D., Wathen, A., 10.1137/S106482759935808X, SIAM J. Sci. Comput. 24 (2002), 237-256. (2002) Zbl1013.65039MR1924423DOI10.1137/S106482759935808X
  13. Mantzaflaris, A., Jüttler, B., G+Smo (Geometry plus Simulation modules) v0.8.1, Available at http://github.com/gismo (2018). (2018) 
  14. Murphy, M. F., Golub, G. H., Wathen, A. J., 10.1137/S1064827599355153, SIAM J. Sci. Comput. 21 (2000), 1969-1972. (2000) Zbl0959.65063MR1762024DOI10.1137/S1064827599355153
  15. Silvester, D., Elman, H., Kay, D., Wathen, A., 10.1016/S0377-0427(00)00515-X, J. Comput. Appl. Math. 128 (2001), 261-279. (2001) Zbl0983.76051MR1820877DOI10.1016/S0377-0427(00)00515-X
  16. Tielen, R., Möller, M., Göddeke, D., Vuik, C., 10.1016/j.cma.2020.113347, Comput. Methods Appl. Mech. Eng. 372 (2020), Article ID 113347, 27 pages. (2020) Zbl07337843MR4138320DOI10.1016/j.cma.2020.113347
  17. Trottenberg, U., Oosterlee, C. W., Schüller, A., Multigrid, Academic Press, San Diego (2001). (2001) Zbl0976.65106MR1807961
  18. Rehman, M. ur, Vuik, C., Segal, G., 10.1002/fld.1957, Int. J. Numer. Methods Fluids 61 (2009), 432-452. (2009) Zbl1171.76033MR2571325DOI10.1002/fld.1957
  19. Vuik, C., Saghir, A., Boerstoel, G. P., 10.1002/1097-0363(20000815)33:7<1027::AID-FLD41>3.0.CO;2-S, Int. J. Numer. Methods Fluids 33 (2000), 1027-1040. (2000) Zbl0960.76054DOI10.1002/1097-0363(20000815)33:7<1027::AID-FLD41>3.0.CO;2-S

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.