On FI-mono-retractable modules

Marziyeh Atashkar; Yahya Talebi

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 2, page 135-143
  • ISSN: 0010-2628

Abstract

top
We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian V -ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.

How to cite

top

Atashkar, Marziyeh, and Talebi, Yahya. "On FI-mono-retractable modules." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 135-143. <http://eudml.org/doc/298542>.

@article{Atashkar2022,
abstract = {We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian $V$-ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.},
author = {Atashkar, Marziyeh, Talebi, Yahya},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {retractable module; FI-mono-retractable module; compressible module; fully invariant submodule},
language = {eng},
number = {2},
pages = {135-143},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On FI-mono-retractable modules},
url = {http://eudml.org/doc/298542},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Atashkar, Marziyeh
AU - Talebi, Yahya
TI - On FI-mono-retractable modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 135
EP - 143
AB - We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian $V$-ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.
LA - eng
KW - retractable module; FI-mono-retractable module; compressible module; fully invariant submodule
UR - http://eudml.org/doc/298542
ER -

References

top
  1. El-Bast Z. A., Smith P. F., 10.1080/00927878808823601, Comm. Algebra 16 (1988), no. 4, 755–779. MR0932633DOI10.1080/00927878808823601
  2. Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1994. Zbl0841.16001MR1312366
  3. Faith C., Algebra: Rings, Modules and Categories. I, Die Grundlehren der mathematischen Wissenschaften, 190, Springer, New York, 1973. MR0366960
  4. Goodearl K. R., Ring Theory. Nonsingular Rings and Modules, Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. Zbl0336.16001MR0429962
  5. Özcan A. Ç., Harmanci A., Smith P. F., 10.1017/S0017089506003260, Glasg. Math. J. 48 (2006), no. 3, 533–545. MR2271381DOI10.1017/S0017089506003260
  6. Ramamurthi V. S., Rangaswamy K. M., 10.7146/math.scand.a-11412, Math. Scand. 31 (1972), 69–77. MR0321974DOI10.7146/math.scand.a-11412
  7. Smith P. F., Vedadi M. R., 10.1016/j.jalgebra.2005.08.018, J. Algebra 304 (2006), no. 2, 812–831. MR2264280DOI10.1016/j.jalgebra.2005.08.018
  8. Wijayanti I. E., Coprime Modules and Comodules, Ph.D. Dissertation, Heinrich–Heine–Universität, Düsseldorf, 2006. 
  9. Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl0746.16001MR1144522
  10. Wisbauer R., Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, Longman, Harlow, 1996. MR1396313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.