On FI-mono-retractable modules
Marziyeh Atashkar; Yahya Talebi
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 2, page 135-143
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAtashkar, Marziyeh, and Talebi, Yahya. "On FI-mono-retractable modules." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 135-143. <http://eudml.org/doc/298542>.
@article{Atashkar2022,
abstract = {We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian $V$-ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.},
author = {Atashkar, Marziyeh, Talebi, Yahya},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {retractable module; FI-mono-retractable module; compressible module; fully invariant submodule},
language = {eng},
number = {2},
pages = {135-143},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On FI-mono-retractable modules},
url = {http://eudml.org/doc/298542},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Atashkar, Marziyeh
AU - Talebi, Yahya
TI - On FI-mono-retractable modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 135
EP - 143
AB - We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian $V$-ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.
LA - eng
KW - retractable module; FI-mono-retractable module; compressible module; fully invariant submodule
UR - http://eudml.org/doc/298542
ER -
References
top- El-Bast Z. A., Smith P. F., 10.1080/00927878808823601, Comm. Algebra 16 (1988), no. 4, 755–779. MR0932633DOI10.1080/00927878808823601
- Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1994. Zbl0841.16001MR1312366
- Faith C., Algebra: Rings, Modules and Categories. I, Die Grundlehren der mathematischen Wissenschaften, 190, Springer, New York, 1973. MR0366960
- Goodearl K. R., Ring Theory. Nonsingular Rings and Modules, Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. Zbl0336.16001MR0429962
- Özcan A. Ç., Harmanci A., Smith P. F., 10.1017/S0017089506003260, Glasg. Math. J. 48 (2006), no. 3, 533–545. MR2271381DOI10.1017/S0017089506003260
- Ramamurthi V. S., Rangaswamy K. M., 10.7146/math.scand.a-11412, Math. Scand. 31 (1972), 69–77. MR0321974DOI10.7146/math.scand.a-11412
- Smith P. F., Vedadi M. R., 10.1016/j.jalgebra.2005.08.018, J. Algebra 304 (2006), no. 2, 812–831. MR2264280DOI10.1016/j.jalgebra.2005.08.018
- Wijayanti I. E., Coprime Modules and Comodules, Ph.D. Dissertation, Heinrich–Heine–Universität, Düsseldorf, 2006.
- Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl0746.16001MR1144522
- Wisbauer R., Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, Longman, Harlow, 1996. MR1396313
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.