Note on the Hilbert 2-class field tower

Abdelmalek Azizi; Mohamed Mahmoud Chems-Eddin; Abdelkader Zekhnini

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 4, page 513-524
  • ISSN: 0862-7959

Abstract

top
Let k be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields 𝕜 = ( d , - 1 ) , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).

How to cite

top

Azizi, Abdelmalek, Chems-Eddin, Mohamed Mahmoud, and Zekhnini, Abdelkader. "Note on the Hilbert 2-class field tower." Mathematica Bohemica 147.4 (2022): 513-524. <http://eudml.org/doc/298797>.

@article{Azizi2022,
abstract = {Let $k$ be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\mathbb \{k\}=\mathbb \{Q\}\big (\sqrt\{d\}, \sqrt\{-1\}\big )$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).},
author = {Azizi, Abdelmalek, Chems-Eddin, Mohamed Mahmoud, Zekhnini, Abdelkader},
journal = {Mathematica Bohemica},
keywords = {multiquadratic field; fundamental systems of units; 2-class group; 2-class field tower; capitulation},
language = {eng},
number = {4},
pages = {513-524},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on the Hilbert 2-class field tower},
url = {http://eudml.org/doc/298797},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Azizi, Abdelmalek
AU - Chems-Eddin, Mohamed Mahmoud
AU - Zekhnini, Abdelkader
TI - Note on the Hilbert 2-class field tower
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 513
EP - 524
AB - Let $k$ be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\mathbb {k}=\mathbb {Q}\big (\sqrt{d}, \sqrt{-1}\big )$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
LA - eng
KW - multiquadratic field; fundamental systems of units; 2-class group; 2-class field tower; capitulation
UR - http://eudml.org/doc/298797
ER -

References

top
  1. Azizi, A., 10.1007/BF02844380, Rend. Circ. Mat. Palermo, II. Ser. French 48 (1999), 71-92. (1999) Zbl0920.11076MR1705171DOI10.1007/BF02844380
  2. Azizi, A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Qué. 23 (1999), 15-21 French. (1999) Zbl1041.11072MR1721726
  3. Azizi, A., Benhamza, I., Sur la capitulation des 2-classes d’idéaux de ( d , - 2 ) , Ann. Sci. Math. Qué. French 29 (2005), 1-20. (2005) Zbl1217.11097MR2296826
  4. Azizi, A., Zekhnini, A., 10.1142/S1793557120500539, Asian-Eur. J. Math. 13 (2020), Article ID 2050053, 6 pages. (2020) Zbl1442.11154MR4096421DOI10.1142/S1793557120500539
  5. Azizi, A., Zekhnini, A., Taous, M., 10.12732/ijpam.v103i1.8, Int. J. Pure Appl. Math. 103 (2015), 99-107. (2015) MR3405725DOI10.12732/ijpam.v103i1.8
  6. Chems-Eddin, M. M., Azizi, A., Zekhnini, A., 10.1007/s40590-021-00329-z, Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages. (2021) Zbl07342807MR4220815DOI10.1007/s40590-021-00329-z
  7. Chems-Eddin, M. M., Zekhnini, A., Azizi, A., 10.3906/mat-2003-117, Turk. J. Math. 44 (2020), 1466-1483. (2020) Zbl1455.11140MR4122918DOI10.3906/mat-2003-117
  8. Conner, P. E., Hurrelbrink, J., 10.1142/0663, Series in Pure Mathematics 8. World Scientific, Singapore (1988). (1988) Zbl0743.11061MR0963648DOI10.1142/0663
  9. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics. Harper and Row, New York (1968). (1968) Zbl0185.05701MR0231903
  10. Heider, F.-P., Schmithals, B., 10.1515/crll.1982.336.1, J. Reine Angew. Math. 366 (1982), 1-25 German. (1982) Zbl0505.12016MR0671319DOI10.1515/crll.1982.336.1
  11. Hilbert, D., 10.1007/BF01446682, Math. Ann. 45 (1894), 309-340 German 9999JFM99999 25.0303.01. (1894) MR1510866DOI10.1007/BF01446682
  12. Kaplan, P., 10.1515/crll.1976.283-284.313, J. Reine Angew. Math. 283/284 (1976), 313-363 French. (1976) Zbl0337.12003MR0404206DOI10.1515/crll.1976.283-284.313
  13. Kisilevsky, H., 10.1016/0022-314X(76)90004-4, J. Number Theory 8 (1976), 271-279. (1976) Zbl0334.12019MR0417128DOI10.1016/0022-314X(76)90004-4
  14. Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. (1966) Zbl0158.30103MR0214565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.