The unit group of some fields of the form
Mathematica Bohemica (2024)
- Issue: 1, page 49-55
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEl Hamam, Moha Ben Taleb. "The unit group of some fields of the form $\mathbb {Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$." Mathematica Bohemica (2024): 49-55. <http://eudml.org/doc/299214>.
@article{ElHamam2024,
abstract = {Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\hspace\{4.44443pt\}(\@mod \; 8)$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb \{L\}=\mathbb \{Q\}(\sqrt\{2\}, \sqrt\{p\}, \sqrt\{q\}, \sqrt\{-l\})$.},
author = {El Hamam, Moha Ben Taleb},
journal = {Mathematica Bohemica},
keywords = {unit group; multiquadratic number fields; unit index},
language = {eng},
number = {1},
pages = {49-55},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The unit group of some fields of the form $\mathbb \{Q\}(\sqrt\{2\}, \sqrt\{p\}, \sqrt\{q\}, \sqrt\{-l\})$},
url = {http://eudml.org/doc/299214},
year = {2024},
}
TY - JOUR
AU - El Hamam, Moha Ben Taleb
TI - The unit group of some fields of the form $\mathbb {Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 49
EP - 55
AB - Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\hspace{4.44443pt}(\@mod \; 8)$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb {L}=\mathbb {Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$.
LA - eng
KW - unit group; multiquadratic number fields; unit index
UR - http://eudml.org/doc/299214
ER -
References
top- Azizi, A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Qué. 23 (1999), 15-21 French 9999MR99999 1721726 . (1999) Zbl1041.11072MR1721726
- Azizi, A., Chems-Eddin, M. M., Zekhnini, A., Note on the Hilbert 2-class field tower, Math. Bohem. 147 (2022), 513-524 9999DOI99999 10.21136/MB.2022.0056-21 . (2022) MR4512171
- Chems-Eddin, M. M., Arithmetic of some real triquadratic fields: Units and 2-class groups, Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages. (2021)
- Chems-Eddin, M. M., 10.1007/s10998-021-00402-0, Period. Math. Hung. 84 (2022), 235-249. (2022) Zbl07551296MR4423478DOI10.1007/s10998-021-00402-0
- Chems-Eddin, M. M., 10.21136/MB.2022.0128-21, Math. Bohem. 148 (2023), 237-242. (2023) Zbl7729575MR4585579DOI10.21136/MB.2022.0128-21
- Chems-Eddin, M. M., Azizi, A., Zekhnini, A., 10.1007/s40590-021-00329-z, Bol. Soc. Mat. Mex, III. Ser. 27 (2021), Article ID 24, 16 pages. (2021) Zbl1468.11223MR4220815DOI10.1007/s40590-021-00329-z
- Chems-Eddin, M. M., Zekhnini, A., Azizi, A., 10.3906/mat-2003-117, Turk. J. Math. 44 (2020), 1466-1483. (2020) Zbl1455.11140MR4122918DOI10.3906/mat-2003-117
- Chems-Eddin, M. M., Zekhnini, A., Azizi, A., On the Hilbert 2-class field towers of some cyclotomic -extensions, Available at https://arxiv.org/abs/2005.06646 (2021), 15 pages. (2021)
- Chems-Eddin, M. M., Zekhnini, A., Azizi, A., 10.1007/s40863-020-00209-w, São Paulo J. Math. Sci 16 (2022), 1091-1096. (2022) Zbl7626140MR4515950DOI10.1007/s40863-020-00209-w
- Kubota, T., 10.1017/S0027763000000088, Nagoya Math. J. 10 (1956), 65-85 German. (1956) Zbl0074.03001MR0083009DOI10.1017/S0027763000000088
- Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. (1966) Zbl0158.30103MR0214565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.