The unit group of some fields of the form ( 2 , p , q , - l )

Moha Ben Taleb El Hamam

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 1, page 49-55
  • ISSN: 0862-7959

Abstract

top
Let p and q be two different prime integers such that p q 3 ( mod 8 ) with ( p / q ) = 1 , and l a positive odd square-free integer relatively prime to p and q . In this paper we investigate the unit groups of number fields 𝕃 = ( 2 , p , q , - l ) .

How to cite

top

El Hamam, Moha Ben Taleb. "The unit group of some fields of the form $\mathbb {Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$." Mathematica Bohemica 149.1 (2024): 49-55. <http://eudml.org/doc/299214>.

@article{ElHamam2024,
abstract = {Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\hspace\{4.44443pt\}(\@mod \; 8)$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb \{L\}=\mathbb \{Q\}(\sqrt\{2\}, \sqrt\{p\}, \sqrt\{q\}, \sqrt\{-l\})$.},
author = {El Hamam, Moha Ben Taleb},
journal = {Mathematica Bohemica},
keywords = {unit group; multiquadratic number fields; unit index},
language = {eng},
number = {1},
pages = {49-55},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The unit group of some fields of the form $\mathbb \{Q\}(\sqrt\{2\}, \sqrt\{p\}, \sqrt\{q\}, \sqrt\{-l\})$},
url = {http://eudml.org/doc/299214},
volume = {149},
year = {2024},
}

TY - JOUR
AU - El Hamam, Moha Ben Taleb
TI - The unit group of some fields of the form $\mathbb {Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 1
SP - 49
EP - 55
AB - Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\hspace{4.44443pt}(\@mod \; 8)$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb {L}=\mathbb {Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$.
LA - eng
KW - unit group; multiquadratic number fields; unit index
UR - http://eudml.org/doc/299214
ER -

References

top
  1. Azizi, A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Qué. 23 (1999), 15-21 French 9999MR99999 1721726 . (1999) Zbl1041.11072MR1721726
  2. Azizi, A., Chems-Eddin, M. M., Zekhnini, A., Note on the Hilbert 2-class field tower, Math. Bohem. 147 (2022), 513-524 9999DOI99999 10.21136/MB.2022.0056-21 . (2022) MR4512171
  3. Chems-Eddin, M. M., Arithmetic of some real triquadratic fields: Units and 2-class groups, Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages. (2021) 
  4. Chems-Eddin, M. M., 10.1007/s10998-021-00402-0, Period. Math. Hung. 84 (2022), 235-249. (2022) Zbl07551296MR4423478DOI10.1007/s10998-021-00402-0
  5. Chems-Eddin, M. M., 10.21136/MB.2022.0128-21, Math. Bohem. 148 (2023), 237-242. (2023) Zbl7729575MR4585579DOI10.21136/MB.2022.0128-21
  6. Chems-Eddin, M. M., Azizi, A., Zekhnini, A., 10.1007/s40590-021-00329-z, Bol. Soc. Mat. Mex, III. Ser. 27 (2021), Article ID 24, 16 pages. (2021) Zbl1468.11223MR4220815DOI10.1007/s40590-021-00329-z
  7. Chems-Eddin, M. M., Zekhnini, A., Azizi, A., 10.3906/mat-2003-117, Turk. J. Math. 44 (2020), 1466-1483. (2020) Zbl1455.11140MR4122918DOI10.3906/mat-2003-117
  8. Chems-Eddin, M. M., Zekhnini, A., Azizi, A., On the Hilbert 2-class field towers of some cyclotomic 2 -extensions, Available at https://arxiv.org/abs/2005.06646 (2021), 15 pages. (2021) MR4769739
  9. Chems-Eddin, M. M., Zekhnini, A., Azizi, A., 10.1007/s40863-020-00209-w, São Paulo J. Math. Sci 16 (2022), 1091-1096. (2022) Zbl7626140MR4515950DOI10.1007/s40863-020-00209-w
  10. Kubota, T., 10.1017/S0027763000000088, Nagoya Math. J. 10 (1956), 65-85 German. (1956) Zbl0074.03001MR0083009DOI10.1017/S0027763000000088
  11. Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. (1966) Zbl0158.30103MR0214565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.