On an additive problem of unlike powers in short intervals

Qingqing Zhang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1167-1174
  • ISSN: 0011-4642

Abstract

top
We prove that almost all positive even integers n can be represented as p 2 2 + p 3 3 + p 4 4 + p 5 5 with | p k k - 1 4 N | N 1 - 1 / 54 + ε for 2 k 5 . As a consequence, we show that each sufficiently large odd integer N can be written as p 1 + p 2 2 + p 3 3 + p 4 4 + p 5 5 with | p k k - 1 5 N | N 1 - 1 / 54 + ε for 1 k 5 .

How to cite

top

Zhang, Qingqing. "On an additive problem of unlike powers in short intervals." Czechoslovak Mathematical Journal 72.4 (2022): 1167-1174. <http://eudml.org/doc/298884>.

@article{Zhang2022,
abstract = {We prove that almost all positive even integers $n$ can be represented as $p_\{2\}^\{2\}+p_\{3\}^\{3\}+p_\{4\}^\{4\}+p_\{5\}^\{5\}$ with $|p_\{k\}^\{k\}-\tfrac\{1\}\{4\} N|\le N^\{1-1/54+\varepsilon \}$ for $2\le k\le 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_\{1\}+p_\{2\}^\{2\}+p_\{3\}^\{3\}+p_\{4\}^\{4\}+p_\{5\}^\{5\}$ with $|p_\{k\}^\{k\}- \tfrac\{1\}\{5\} N|\le N^\{1-1/54+\varepsilon \}$ for $1\le k\le 5$.},
author = {Zhang, Qingqing},
journal = {Czechoslovak Mathematical Journal},
keywords = {Waring-Goldbach problem; exponential sum over prime in short interval; circle method},
language = {eng},
number = {4},
pages = {1167-1174},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an additive problem of unlike powers in short intervals},
url = {http://eudml.org/doc/298884},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Zhang, Qingqing
TI - On an additive problem of unlike powers in short intervals
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1167
EP - 1174
AB - We prove that almost all positive even integers $n$ can be represented as $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}-\tfrac{1}{4} N|\le N^{1-1/54+\varepsilon }$ for $2\le k\le 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_{1}+p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}- \tfrac{1}{5} N|\le N^{1-1/54+\varepsilon }$ for $1\le k\le 5$.
LA - eng
KW - Waring-Goldbach problem; exponential sum over prime in short interval; circle method
UR - http://eudml.org/doc/298884
ER -

References

top
  1. Bauer, C., 10.1216/rmjm/1021249436, Rocky Mt. J. Math. 31 (2001), 1151-1170. (2001) Zbl1035.11047MR1895291DOI10.1216/rmjm/1021249436
  2. Bauer, C., 10.1216/RMJ-2008-38-4-1073, Rocky Mt. J. Math. 38 (2008), 1073-1090. (2008) Zbl1232.11101MR2435914DOI10.1216/RMJ-2008-38-4-1073
  3. Karatsuba, A. A., 10.1007/978-3-642-58018-5, Springer, Berlin (1993). (1993) Zbl0767.11001MR1215269DOI10.1007/978-3-642-58018-5
  4. Li, T., Tang, H., 10.1515/integ.2011.097, Integers 12 (2012), 321-344. (2012) Zbl1282.11136MR2955518DOI10.1515/integ.2011.097
  5. Li, T., Yao, Y., 10.1007/s00209-020-02649-8, Math. Z. 299 (2021), 83-99. (2021) Zbl07402879MR4311596DOI10.1007/s00209-020-02649-8
  6. Prachar, K., 10.1007/BF01319081, Monatsh. Math. 57 (1953), 66-74 German. (1953) Zbl0050.04003MR0061626DOI10.1007/BF01319081
  7. Ren, X. M., Tsang, K. M., 10.1007/s10114-005-0733-z, Acta Math. Sin., Engl. Ser. 23 (2007), 265-280. (2007) Zbl1128.11043MR2286920DOI10.1007/s10114-005-0733-z
  8. Ren, X. M., Tsang, K. M., Waring-Goldbach problems for unlike powers. II, Acta Math. Sin., Chin. Ser. 50 (2007), 175-182 Chinese. (2007) Zbl1121.11312MR2305808
  9. Roth, K. F., 10.1112/plms/s2-53.5.381, Proc. Lond. Math. Soc., II. Ser. 53 (1951), 381-395. (1951) Zbl0044.03601MR0041874DOI10.1112/plms/s2-53.5.381
  10. Zhang, M., 10.1007/s11464-016-0512-4, Front. Math. China 11 (2016), 449-460. (2016) Zbl1335.11083MR3473745DOI10.1007/s11464-016-0512-4
  11. Zhao, L. L., 10.1007/s10114-014-3661-y, Acta Math. Sin., Engl. Ser. 30 (2014), 1897-1904. (2014) Zbl1302.11080MR3266786DOI10.1007/s10114-014-3661-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.