A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1047-1054
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHua, Guodong. "A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form." Czechoslovak Mathematical Journal 72.4 (2022): 1047-1054. <http://eudml.org/doc/298887>.
@article{Hua2022,
abstract = {Let $f$ be a normalized primitive holomorphic cusp form of even integral weight $k$ for the full modular group $\{\rm SL\}(2,\mathbb \{Z\})$, and denote its $n$th Fourier coefficient by $\lambda _\{f\}(n)$. We consider the hybrid problem of quadratic forms with prime variables and Hecke eigenvalues of normalized primitive holomorphic cusp forms, which generalizes the result of D. Y. Zhang, Y. N. Wang (2017).},
author = {Hua, Guodong},
journal = {Czechoslovak Mathematical Journal},
keywords = {circle method; cusp form; Fourier coefficient},
language = {eng},
number = {4},
pages = {1047-1054},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form},
url = {http://eudml.org/doc/298887},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Hua, Guodong
TI - A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1047
EP - 1054
AB - Let $f$ be a normalized primitive holomorphic cusp form of even integral weight $k$ for the full modular group ${\rm SL}(2,\mathbb {Z})$, and denote its $n$th Fourier coefficient by $\lambda _{f}(n)$. We consider the hybrid problem of quadratic forms with prime variables and Hecke eigenvalues of normalized primitive holomorphic cusp forms, which generalizes the result of D. Y. Zhang, Y. N. Wang (2017).
LA - eng
KW - circle method; cusp form; Fourier coefficient
UR - http://eudml.org/doc/298887
ER -
References
top- Calderón, C., Velasco, M. J. de, 10.1007/BF01377596, Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. (2000) Zbl1031.11057MR1754956DOI10.1007/BF01377596
- Chamizo, F., Iwaniec, H., 10.4171/RMI/178, Rev. Mat. Iberoam. 11 (1995), 417-429. (1995) Zbl0837.11054MR1344899DOI10.4171/RMI/178
- Chen, J., Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions. II, Sci. Sin. 12 (1963), 751-764. (1963) Zbl0127.27503MR0186632
- Deligne, P., 10.1007/BF02684373, Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. (1974) Zbl0287.14001MR0340258DOI10.1007/BF02684373
- Friedlander, J. B., Iwaniec, H., 10.1007/s11511-009-0033-z, Acta Math. 202 (2009), 1-19. (2009) Zbl1278.11089MR2486486DOI10.1007/s11511-009-0033-z
- Guo, R., Zhai, W., 10.4064/aa156-2-1, Acta Arith. 156 (2012), 101-121. (2012) Zbl1270.11099MR2997561DOI10.4064/aa156-2-1
- Heath-Brown, D. R., Lattice points in the sphere, Number Theory in Progress. Vol. 2 de Gruyter, Berlin (1999), 883-892. (1999) Zbl0929.11040MR1689550
- Hu, G., Jiang, Y., Lü, G., 10.1112/mtk.12006, Mathematika 66 (2020), 39-55. (2020) Zbl1470.11082MR4130311DOI10.1112/mtk.12006
- Hu, G., Lü, G., 10.1016/j.jnt.2020.08.009, J. Number Theory 220 (2021), 61-74. (2021) Zbl1466.11065MR4177535DOI10.1016/j.jnt.2020.08.009
- Hu, L., Yang, L., 10.4064/aa170120-20-10, Acta Arith. 183 (2018), 63-85. (2018) Zbl1428.11170MR3774393DOI10.4064/aa170120-20-10
- Hua, L.-K., 10.1093/qmath/os-9.1.199, Q. J. Math., Oxf. Ser. 9 (1938), 199-202. (1938) Zbl0020.10504DOI10.1093/qmath/os-9.1.199
- Ren, X., 10.1360/03ys0341, Sci. China, Ser. A 48 (2005), 785-797. (2005) Zbl1100.11025MR2158973DOI10.1360/03ys0341
- Sun, Q., Zhang, D., 10.1016/j.jnt.2016.04.010, J. Number Theory 168 (2016), 215-246. (2016) Zbl1396.11117MR3515816DOI10.1016/j.jnt.2016.04.010
- Vaughan, R. C., 10.1017/CBO9780511470929, Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11046MR1435742DOI10.1017/CBO9780511470929
- Vinogradov, I. M., On the number of integer points in a sphere, Izv. Akad. Nauk SSSR, Ser. Mat. 27 (1963), 957-968 Russian. (1963) Zbl0116.03901MR0156821
- Zhang, D., Wang, Y., 10.1016/j.jnt.2016.12.018, J. Number Theory 176 (2017), 211-225. (2017) Zbl1422.11100MR3622128DOI10.1016/j.jnt.2016.12.018
- Zhao, L., 10.4064/aa163-2-6, Acta Arith. 163 (2014), 161-177. (2014) Zbl1346.11056MR3200169DOI10.4064/aa163-2-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.