Certain additive decompositions in a noncommutative ring

Huanyin Chen; Marjan Sheibani; Rahman Bahmani

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1217-1226
  • ISSN: 0011-4642

Abstract

top
We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a 2 × 2 matrix A over a projective-free ring R is strongly J -clean if and only if A J ( M 2 ( R ) ) , or I 2 - A J ( M 2 ( R ) ) , or A is similar to 0 λ 1 μ , where λ J ( R ) , μ 1 + J ( R ) , and the equation x 2 - x μ - λ = 0 has a root in J ( R ) and a root in 1 + J ( R ) . We further prove that f ( x ) R [ [ x ] ] is strongly J -clean if f ( 0 ) R be optimally J -clean.

How to cite

top

Chen, Huanyin, Sheibani, Marjan, and Bahmani, Rahman. "Certain additive decompositions in a noncommutative ring." Czechoslovak Mathematical Journal 72.4 (2022): 1217-1226. <http://eudml.org/doc/298888>.

@article{Chen2022,
abstract = {We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left(\{\textstyle \begin\{matrix\}0&\lambda \\ 1&\mu \end\{matrix\}\}\right)$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.},
author = {Chen, Huanyin, Sheibani, Marjan, Bahmani, Rahman},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series},
language = {eng},
number = {4},
pages = {1217-1226},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain additive decompositions in a noncommutative ring},
url = {http://eudml.org/doc/298888},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Chen, Huanyin
AU - Sheibani, Marjan
AU - Bahmani, Rahman
TI - Certain additive decompositions in a noncommutative ring
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1217
EP - 1226
AB - We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left({\textstyle \begin{matrix}0&\lambda \\ 1&\mu \end{matrix}}\right)$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.
LA - eng
KW - idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series
UR - http://eudml.org/doc/298888
ER -

References

top
  1. Anderson, D. D., Camillo, V. P., 10.1081/AGB-120004490, Commun. Algebra 30 (2002), 3327-3336. (2002) Zbl1083.13501MR1914999DOI10.1081/AGB-120004490
  2. Ashrafi, N., Nasibi, E., Strongly J -clean group rings, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 14 (2013), 9-12. (2013) Zbl1313.16036MR3038863
  3. Chen, H., 10.1142/8006, Series in Algebra 11. World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904DOI10.1142/8006
  4. Chen, H., 10.1080/00927872.2010.551529, Commun. Algebra 40 (2012), 1352-1362. (2012) Zbl1244.16024MR2912989DOI10.1080/00927872.2010.551529
  5. Danchev, P. V., McGovern, W. W., 10.1016/j.jalgebra.2014.12.003, J. Algebra 425 (2015), 410-422. (2015) Zbl1316.16028MR3295991DOI10.1016/j.jalgebra.2014.12.003
  6. Diesl, A. J., Dorsey, T. J., 10.1016/j.jalgebra.2013.08.044, J. Algebra 399 (2014), 854-869. (2014) Zbl1310.16023MR3144615DOI10.1016/j.jalgebra.2013.08.044
  7. Dorsey, T. J., Cleanness and Strong Cleanness of Rings of Matrices: Ph.D. Thesis, University of California, Berkeley (2006). (2006) MR2709133
  8. Fan, L., Yang, X., 10.1080/00927870802570693, Commun. Algebra 38 (2010), 799-806. (2010) Zbl1191.16029MR2650370DOI10.1080/00927870802570693
  9. Koşan, M. T., Yildirim, T., Zhou, Y., 10.4153/S0008439519000092, Can. Math. Bull. 62 (2019), 810-821. (2019) Zbl07128566MR4028489DOI10.4153/S0008439519000092
  10. Shifflet, D. R., Optimally Clean Rings: Ph.D. Thesis, Bowling Green State University, Bowling Green (2011). (2011) MR3121884
  11. Yang, X., Zhou, Y., 10.1016/j.jalgebra.2008.06.012, J. Algebra 320 (2008), 2280-2290. (2008) Zbl1162.16017MR2437500DOI10.1016/j.jalgebra.2008.06.012
  12. Zhu, H., Zou, H., Patrício, P., 10.1142/S0219498819501330, J. Algebra Appl. 18 (2019), Article ID 1950133, 9 pages. (2019) Zbl1453.16039MR3977794DOI10.1142/S0219498819501330

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.