Certain additive decompositions in a noncommutative ring
Huanyin Chen; Marjan Sheibani; Rahman Bahmani
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1217-1226
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Huanyin, Sheibani, Marjan, and Bahmani, Rahman. "Certain additive decompositions in a noncommutative ring." Czechoslovak Mathematical Journal 72.4 (2022): 1217-1226. <http://eudml.org/doc/298888>.
@article{Chen2022,
abstract = {We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left(\{\textstyle \begin\{matrix\}0&\lambda \\ 1&\mu \end\{matrix\}\}\right)$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.},
author = {Chen, Huanyin, Sheibani, Marjan, Bahmani, Rahman},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series},
language = {eng},
number = {4},
pages = {1217-1226},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain additive decompositions in a noncommutative ring},
url = {http://eudml.org/doc/298888},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Chen, Huanyin
AU - Sheibani, Marjan
AU - Bahmani, Rahman
TI - Certain additive decompositions in a noncommutative ring
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1217
EP - 1226
AB - We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left({\textstyle \begin{matrix}0&\lambda \\ 1&\mu \end{matrix}}\right)$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.
LA - eng
KW - idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series
UR - http://eudml.org/doc/298888
ER -
References
top- Anderson, D. D., Camillo, V. P., 10.1081/AGB-120004490, Commun. Algebra 30 (2002), 3327-3336. (2002) Zbl1083.13501MR1914999DOI10.1081/AGB-120004490
- Ashrafi, N., Nasibi, E., Strongly -clean group rings, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 14 (2013), 9-12. (2013) Zbl1313.16036MR3038863
- Chen, H., 10.1142/8006, Series in Algebra 11. World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904DOI10.1142/8006
- Chen, H., 10.1080/00927872.2010.551529, Commun. Algebra 40 (2012), 1352-1362. (2012) Zbl1244.16024MR2912989DOI10.1080/00927872.2010.551529
- Danchev, P. V., McGovern, W. W., 10.1016/j.jalgebra.2014.12.003, J. Algebra 425 (2015), 410-422. (2015) Zbl1316.16028MR3295991DOI10.1016/j.jalgebra.2014.12.003
- Diesl, A. J., Dorsey, T. J., 10.1016/j.jalgebra.2013.08.044, J. Algebra 399 (2014), 854-869. (2014) Zbl1310.16023MR3144615DOI10.1016/j.jalgebra.2013.08.044
- Dorsey, T. J., Cleanness and Strong Cleanness of Rings of Matrices: Ph.D. Thesis, University of California, Berkeley (2006). (2006) MR2709133
- Fan, L., Yang, X., 10.1080/00927870802570693, Commun. Algebra 38 (2010), 799-806. (2010) Zbl1191.16029MR2650370DOI10.1080/00927870802570693
- Koşan, M. T., Yildirim, T., Zhou, Y., 10.4153/S0008439519000092, Can. Math. Bull. 62 (2019), 810-821. (2019) Zbl07128566MR4028489DOI10.4153/S0008439519000092
- Shifflet, D. R., Optimally Clean Rings: Ph.D. Thesis, Bowling Green State University, Bowling Green (2011). (2011) MR3121884
- Yang, X., Zhou, Y., 10.1016/j.jalgebra.2008.06.012, J. Algebra 320 (2008), 2280-2290. (2008) Zbl1162.16017MR2437500DOI10.1016/j.jalgebra.2008.06.012
- Zhu, H., Zou, H., Patrício, P., 10.1142/S0219498819501330, J. Algebra Appl. 18 (2019), Article ID 1950133, 9 pages. (2019) Zbl1453.16039MR3977794DOI10.1142/S0219498819501330
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.