On the quasi-periodic p -adic Ruban continued fractions

Basma Ammous; Nour Ben Mahmoud; Mohamed Hbaib

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1157-1166
  • ISSN: 0011-4642

Abstract

top
We study a family of quasi periodic p -adic Ruban continued fractions in the p -adic field p and we give a criterion of a quadratic or transcendental p -adic number which based on the p -adic version of the subspace theorem due to Schlickewei.

How to cite

top

Ammous, Basma, Ben Mahmoud, Nour, and Hbaib, Mohamed. "On the quasi-periodic $p$-adic Ruban continued fractions." Czechoslovak Mathematical Journal 72.4 (2022): 1157-1166. <http://eudml.org/doc/298902>.

@article{Ammous2022,
abstract = {We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb \{Q\}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.},
author = {Ammous, Basma, Ben Mahmoud, Nour, Hbaib, Mohamed},
journal = {Czechoslovak Mathematical Journal},
keywords = {continued fraction; $p$-adic number; transcendence; subspace theorem},
language = {eng},
number = {4},
pages = {1157-1166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the quasi-periodic $p$-adic Ruban continued fractions},
url = {http://eudml.org/doc/298902},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Ammous, Basma
AU - Ben Mahmoud, Nour
AU - Hbaib, Mohamed
TI - On the quasi-periodic $p$-adic Ruban continued fractions
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1157
EP - 1166
AB - We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.
LA - eng
KW - continued fraction; $p$-adic number; transcendence; subspace theorem
UR - http://eudml.org/doc/298902
ER -

References

top
  1. Adamczewski, B., Bugeaud, Y., On the decimal expansion of algebraic numbers, Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. (2005) Zbl1138.11028MR2191109
  2. Adamczewski, B., Bugeaud, Y., 10.4007/annals.2007.165.547, Ann. Math. (2) 165 (2007), 547-565. (2007) Zbl1195.11094MR2299740DOI10.4007/annals.2007.165.547
  3. Adamczewski, B., Bugeaud, Y., 10.1515/CRELLE.2007.036, J. Reine Angew. Math. 606 (2007), 105-121. (2007) Zbl1145.11054MR2337643DOI10.1515/CRELLE.2007.036
  4. Baker, A., 10.1112/S002557930000303X, Mathematika, Lond. 9 (1962), 1-8. (1962) Zbl0105.03903MR0144853DOI10.1112/S002557930000303X
  5. Laohakosol, V., 10.1017/S1446788700026070, J. Aust. Math. Soc., Ser. A 39 (1985), 300-305. (1985) Zbl0582.10021MR0802720DOI10.1017/S1446788700026070
  6. LeVeque, W. J., Topics in Number Theory. II, Addison-Wesley, Reading (1956). (1956) Zbl0070.03804MR0080682
  7. Mahler, K., Zur Approximation p -adischer Irrationalzahlen, Nieuw Arch. Wiskd. 18 (1934), 22-34 German. (1934) Zbl0009.20003
  8. Maillet, E., Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, Paris (1906), French 9999JFM99999 37.0237.02. (1906) 
  9. Neukirch, J., 10.1007/978-3-662-03983-0, Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). (1999) Zbl0956.11021MR1697859DOI10.1007/978-3-662-03983-0
  10. Ooto, T., 10.1007/s00209-017-1859-2, Math. Z. 287 (2017), 1053-1064. (2017) Zbl1388.11040MR3719527DOI10.1007/s00209-017-1859-2
  11. Ruban, A. A., 10.1007/BF00970247, Sib. Math. J. 11 (1970), 176-180. (1970) Zbl0213.32701MR0260700DOI10.1007/BF00970247
  12. Schlickewei, H. P., 10.1007/BF01220404, Arch. Math. 29 (1977), 267-270. (1977) Zbl0365.10026MR0491529DOI10.1007/BF01220404
  13. Schmidt, W. M., 10.1007/978-3-540-38645-2, Lecture Notes in Mathematics 785. Springer, Berlin (1980). (1980) Zbl0421.10019MR0568710DOI10.1007/978-3-540-38645-2
  14. Wang, L., P -adic continued fractions. I, Sci. Sin., Ser. A 28 (1985), 1009-1017. (1985) Zbl0628.10036MR0866457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.