Displaying similar documents to “On the quasi-periodic p -adic Ruban continued fractions”

On p -adic Euler constants

Abhishek Bharadwaj (2021)

Czechoslovak Mathematical Journal

Similarity:

The goal of this article is to associate a p -adic analytic function to the Euler constants γ p ( a , F ) , study the properties of these functions in the neighborhood of s = 1 and introduce a p -adic analogue of the infinite sum n 1 f ( n ) / n for an algebraic valued, periodic function f . After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to p -adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove...

The Heyde theorem on a-adic solenoids

Margaryta Myronyuk (2013)

Colloquium Mathematicae

Similarity:

We prove the following analogue of the Heyde theorem for a-adic solenoids. Let ξ₁, ξ₂ be independent random variables with values in an a-adic solenoid Σ a and with distributions μ₁, μ₂. Let α j , β j be topological automorphisms of Σ a such that β α - 1 ± β α - 1 are topological automorphisms of Σ a too. Assuming that the conditional distribution of the linear form L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ is symmetric, we describe the possible distributions μ₁, μ₂.

The geometry of non-unit Pisot substitutions

Milton Minervino, Jörg Thuswaldner (2014)

Annales de l’institut Fourier

Similarity:

It is known that with a non-unit Pisot substitution σ one can associate certain fractal tiles, so-called Rauzy fractals. In our setting, these fractals are subsets of a certain open subring of the adèle ring of the associated Pisot number field. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, in terms of the dual of the one-dimensional...

On the de Rham and p -adic realizations of the elliptic polylogarithm for CM elliptic curves

Kenichi Bannai, Shinichi Kobayashi, Takeshi Tsuji (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this paper, we give an explicit description of the de Rham and p -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve E defined over an imaginary quadratic field 𝕂 with complex multiplication by the full ring of integers 𝒪 𝕂 of 𝕂 . Note that our condition implies that 𝕂 has class number one. Assume in addition that E has good reduction above a prime p 5 unramified in 𝒪 𝕂 . In this case, we prove that the specializations of the...

A note on p-adic valuations of Schenker sums

Piotr Miska (2015)

Colloquium Mathematicae

Similarity:

A prime number p is called a Schenker prime if there exists n ∈ ℕ₊ such that p∤n and p|aₙ, where a = j = 0 n ( n ! / j ! ) n j is a so-called Schenker sum. T. Amdeberhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of aₙ when p is a Schenker prime. In particular, they conjectured that for each k ∈ ℕ₊ there exists a unique positive integer n k < 5 k such that v ( a m · 5 k + n k ) k for each nonnegative integer m. We prove that for every k ∈ ℕ₊ the inequality v₅(aₙ) ≥ k has exactly one solution modulo 5 k . This...

Base change for Bernstein centers of depth zero principal series blocks

Thomas J. Haines (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  G be an unramified group over a p -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for  G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 ( p ) -level structure initiated by M. Rapoport and the author in [15].

Lifting the field of norms

Laurent Berger (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

Let K be a finite extension of Q p . The field of norms of a p -adic Lie extension K / K is a local field of characteristic p which comes equipped with an action of Gal ( K / K ) . When can we lift this action to characteristic 0 , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of ( ϕ , Γ ) -modules, and give a condition for the existence of certain types of lifts.

Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes

Robert Harron, Antonio Lei (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f be a cuspidal newform with complex multiplication (CM) and let p be an odd prime at which f is non-ordinary. We construct admissible p -adic L -functions for the symmetric powers of f , thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus p -adic L -functions and prove an analogue of Pollack’s decomposition of the admissible...

An explicit computation of p -stabilized vectors

Michitaka MIYAUCHI, Takuya YAMAUCHI (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we give a concrete method to compute p -stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over p -adic fields. An application to the global setting is also discussed. In particular, we give an explicit p -stabilized form of a Saito-Kurokawa lift.

An alternative description of the Drinfeld p -adic half-plane

Stephen Kudla, Michael Rapoport (2014)

Annales de l’institut Fourier

Similarity:

We show that the Deligne formal model of the Drinfeld p -adic half-plane relative to a local field F represents a moduli problem of polarized O F -modules with an action of the ring of integers in a quadratic extension E of F . The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of SL 2 ( F ) and SU ( C ) ( F ) for a two-dimensional split hermitian space C for E / F .

Hodge-Tate and de Rham representations in the imperfect residue field case

Kazuma Morita (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let K be a p -adic local field with residue field k such that [ k : k p ] = p e &lt; + and V be a p -adic representation of Gal ( K ¯ / K ) . Then, by using the theory of p -adic differential modules, we show that V is a Hodge-Tate (resp. de Rham) representation of Gal ( K ¯ / K ) if and only if V is a Hodge-Tate (resp. de Rham) representation of Gal ( K pf ¯ / K pf ) where K pf / K is a certain p -adic local field with residue field the smallest perfect field k pf containing k .

Lacunary formal power series and the Stern-Brocot sequence

Jean-Paul Allouche, Michel Mendès France (2013)

Acta Arithmetica

Similarity:

Let F ( X ) = n 0 ( - 1 ) ε X - λ be a real lacunary formal power series, where εₙ = 0,1 and λ n + 1 / λ > 2 . It is known that the denominators Qₙ(X) of the convergents of its continued fraction expansion are polynomials with coefficients 0, ±1, and that the number of nonzero terms in Qₙ(X) is the nth term of the Stern-Brocot sequence. We show that replacing the index n by any 2-adic integer ω makes sense. We prove that Q ω ( X ) is a polynomial if and only if ω ∈ ℤ. In all the other cases Q ω ( X ) is an infinite formal power series; we discuss...

Optimality of the Width- w Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases

Clemens Heuberger, Daniel Krenn (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider digit expansions j = 0 - 1 Φ j ( d j ) with an endomorphism Φ of an Abelian group. In such a numeral system, the w -NAF condition (each block of w consecutive digits contains at most one nonzero) is shown to minimise the Hamming weight over all expansions with the same digit set if and only if it fulfills the subadditivity condition (the sum of every two expansions of weight 1 admits an optimal w -NAF). This result is then applied to imaginary quadratic bases, which are used for scalar...

-invariants and Darmon cycles attached to modular forms

Victor Rotger, Marco Adamo Seveso (2012)

Journal of the European Mathematical Society

Similarity:

Let f be a modular eigenform of even weight k 2 and new at a prime p dividing exactly the level with respect to an indefinite quaternion algebra. The theory of Fontaine-Mazur allows to attach to f a monodromy module D f F M and an -invariant f F M . The first goal of this paper is building a suitable p -adic integration theory that allows us to construct a new monodromy module D f and -invariant f , in the spirit of Darmon. The two monodromy modules are isomorphic, and in particular the two -invariants...

Dual Blobs and Plancherel Formulas

Ju-Lee Kim (2004)

Bulletin de la Société Mathématique de France

Similarity:

Let k be a p -adic field. Let G be the group of k -rational points of a connected reductive group 𝖦 defined over k , and let 𝔤 be its Lie algebra. Under certain hypotheses on 𝖦 and k , wethe tempered dual G ^ of G via the Plancherel formula on 𝔤 , using some character expansions. This involves matching spectral decomposition factors of the Plancherel formulas on 𝔤 and G . As a consequence, we prove that any tempered representation contains a good minimal 𝖪 -type; we extend this result to irreducible...