The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part

Min Hu; Dinghuai Wang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1121-1131
  • ISSN: 0011-4642

Abstract

top
A version of the John-Nirenberg inequality suitable for the functions b BMO with b - L is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.

How to cite

top

Hu, Min, and Wang, Dinghuai. "The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part." Czechoslovak Mathematical Journal 72.4 (2022): 1121-1131. <http://eudml.org/doc/298917>.

@article{Hu2022,
abstract = {A version of the John-Nirenberg inequality suitable for the functions $b\in \{\rm BMO\}$ with $b^\{-\}\in L^\{\infty \}$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.},
author = {Hu, Min, Wang, Dinghuai},
journal = {Czechoslovak Mathematical Journal},
keywords = {bounded mean oscillation; commutator; Hardy-Littlewood maximal operator; John-Nirenberg inequality},
language = {eng},
number = {4},
pages = {1121-1131},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part},
url = {http://eudml.org/doc/298917},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Hu, Min
AU - Wang, Dinghuai
TI - The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1121
EP - 1131
AB - A version of the John-Nirenberg inequality suitable for the functions $b\in {\rm BMO}$ with $b^{-}\in L^{\infty }$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.
LA - eng
KW - bounded mean oscillation; commutator; Hardy-Littlewood maximal operator; John-Nirenberg inequality
UR - http://eudml.org/doc/298917
ER -

References

top
  1. Bastero, J., Milman, M., Ruiz, F. J., 10.1090/S0002-9939-00-05763-4, Proc. Am. Math. Soc. 128 (2000), 3329-3334. (2000) Zbl0957.42010MR1777580DOI10.1090/S0002-9939-00-05763-4
  2. Bennett, C., DeVore, R. A., Sharpley, R., 10.2307/2006999, Ann. Math. (2) 113 (1981), 601-611. (1981) Zbl0465.42015MR0621018DOI10.2307/2006999
  3. Bloom, S., 10.1090/S0002-9947-1985-0805955-5, Trans. Am. Math. Soc. 292 (1985), 103-122. (1985) Zbl0578.42012MR0805955DOI10.1090/S0002-9947-1985-0805955-5
  4. Chanillo, S., 10.1512/iumj.1982.31.31002, Indiana Univ. Math. J. 31 (1982), 7-16. (1982) Zbl0523.42015MR0642611DOI10.1512/iumj.1982.31.31002
  5. Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
  6. García-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
  7. Ho, K.-P., 10.32917/hmj/1314204559, Hiroshima Math. J. 41 (2011), 153-165. (2011) Zbl1227.42024MR2849152DOI10.32917/hmj/1314204559
  8. Izuki, M., Noi, T., Sawano, Y., 10.1186/s13660-019-2220-6, J. Inequal. Appl. 2019 (2019), Article ID 268, 11 pages. (2019) Zbl07459296MR4025529DOI10.1186/s13660-019-2220-6
  9. Janson, S., 10.1007/BF02386000, Ark. Math. 16 (1978), 263-270. (1978) Zbl0404.42013MR0524754DOI10.1007/BF02386000
  10. John, F., Nirenberg, L., 10.1002/cpa.3160140317, Commun. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498DOI10.1002/cpa.3160140317
  11. Martínez, Á. D., Spector, D., 10.1515/anona-2020-0157, Adv. Nonlinear Anal. 10 (2021), 877-894. (2021) Zbl1478.46036MR4191703DOI10.1515/anona-2020-0157
  12. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  13. Muckenhoupt, B., Wheeden, R. L., 10.4064/sm-54-3-221-237, Stud. Math. 54 (1976), 221-237. (1976) Zbl0318.26014MR0399741DOI10.4064/sm-54-3-221-237
  14. Uchiyama, A., 10.2748/tmj/1178230105, Tohoku Math. J., II. Ser. 30 (1978), 163-171. (1978) Zbl0384.47023MR0467384DOI10.2748/tmj/1178230105
  15. Wang, D., 10.21136/CMJ.2019.0590-17, Czech. Math. J. 69 (2019), 1029-1037. (2019) Zbl07144872MR4039617DOI10.21136/CMJ.2019.0590-17
  16. Wang, D., Zhou, J., Teng, Z., 10.1002/mana.201700318, Math. Nachr. 291 (2018), 1908-1918. (2018) Zbl1400.30056MR3844813DOI10.1002/mana.201700318
  17. Wang, D., Zhou, J., Teng, Z., 10.1017/S1446788718000447, J. Aust. Math. Soc. 107 (2019), 381-391. (2019) Zbl07135450MR4034596DOI10.1017/S1446788718000447
  18. Zhang, P., 10.1007/s10114-015-4293-6, Acta Math. Sin., Engl. Ser. 31 (2015), 973-994. (2015) Zbl1325.42025MR3343963DOI10.1007/s10114-015-4293-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.