The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1121-1131
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHu, Min, and Wang, Dinghuai. "The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part." Czechoslovak Mathematical Journal 72.4 (2022): 1121-1131. <http://eudml.org/doc/298917>.
@article{Hu2022,
abstract = {A version of the John-Nirenberg inequality suitable for the functions $b\in \{\rm BMO\}$ with $b^\{-\}\in L^\{\infty \}$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.},
author = {Hu, Min, Wang, Dinghuai},
journal = {Czechoslovak Mathematical Journal},
keywords = {bounded mean oscillation; commutator; Hardy-Littlewood maximal operator; John-Nirenberg inequality},
language = {eng},
number = {4},
pages = {1121-1131},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part},
url = {http://eudml.org/doc/298917},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Hu, Min
AU - Wang, Dinghuai
TI - The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1121
EP - 1131
AB - A version of the John-Nirenberg inequality suitable for the functions $b\in {\rm BMO}$ with $b^{-}\in L^{\infty }$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.
LA - eng
KW - bounded mean oscillation; commutator; Hardy-Littlewood maximal operator; John-Nirenberg inequality
UR - http://eudml.org/doc/298917
ER -
References
top- Bastero, J., Milman, M., Ruiz, F. J., 10.1090/S0002-9939-00-05763-4, Proc. Am. Math. Soc. 128 (2000), 3329-3334. (2000) Zbl0957.42010MR1777580DOI10.1090/S0002-9939-00-05763-4
- Bennett, C., DeVore, R. A., Sharpley, R., 10.2307/2006999, Ann. Math. (2) 113 (1981), 601-611. (1981) Zbl0465.42015MR0621018DOI10.2307/2006999
- Bloom, S., 10.1090/S0002-9947-1985-0805955-5, Trans. Am. Math. Soc. 292 (1985), 103-122. (1985) Zbl0578.42012MR0805955DOI10.1090/S0002-9947-1985-0805955-5
- Chanillo, S., 10.1512/iumj.1982.31.31002, Indiana Univ. Math. J. 31 (1982), 7-16. (1982) Zbl0523.42015MR0642611DOI10.1512/iumj.1982.31.31002
- Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
- García-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
- Ho, K.-P., 10.32917/hmj/1314204559, Hiroshima Math. J. 41 (2011), 153-165. (2011) Zbl1227.42024MR2849152DOI10.32917/hmj/1314204559
- Izuki, M., Noi, T., Sawano, Y., 10.1186/s13660-019-2220-6, J. Inequal. Appl. 2019 (2019), Article ID 268, 11 pages. (2019) Zbl07459296MR4025529DOI10.1186/s13660-019-2220-6
- Janson, S., 10.1007/BF02386000, Ark. Math. 16 (1978), 263-270. (1978) Zbl0404.42013MR0524754DOI10.1007/BF02386000
- John, F., Nirenberg, L., 10.1002/cpa.3160140317, Commun. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498DOI10.1002/cpa.3160140317
- Martínez, Á. D., Spector, D., 10.1515/anona-2020-0157, Adv. Nonlinear Anal. 10 (2021), 877-894. (2021) Zbl1478.46036MR4191703DOI10.1515/anona-2020-0157
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Muckenhoupt, B., Wheeden, R. L., 10.4064/sm-54-3-221-237, Stud. Math. 54 (1976), 221-237. (1976) Zbl0318.26014MR0399741DOI10.4064/sm-54-3-221-237
- Uchiyama, A., 10.2748/tmj/1178230105, Tohoku Math. J., II. Ser. 30 (1978), 163-171. (1978) Zbl0384.47023MR0467384DOI10.2748/tmj/1178230105
- Wang, D., 10.21136/CMJ.2019.0590-17, Czech. Math. J. 69 (2019), 1029-1037. (2019) Zbl07144872MR4039617DOI10.21136/CMJ.2019.0590-17
- Wang, D., Zhou, J., Teng, Z., 10.1002/mana.201700318, Math. Nachr. 291 (2018), 1908-1918. (2018) Zbl1400.30056MR3844813DOI10.1002/mana.201700318
- Wang, D., Zhou, J., Teng, Z., 10.1017/S1446788718000447, J. Aust. Math. Soc. 107 (2019), 381-391. (2019) Zbl07135450MR4034596DOI10.1017/S1446788718000447
- Zhang, P., 10.1007/s10114-015-4293-6, Acta Math. Sin., Engl. Ser. 31 (2015), 973-994. (2015) Zbl1325.42025MR3343963DOI10.1007/s10114-015-4293-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.