Notes on commutator on the variable exponent Lebesgue spaces

Dinghuai Wang

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1029-1037
  • ISSN: 0011-4642

Abstract

top
We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss is bounded on the variable exponent Lebesgue spaces, then is a bounded mean oscillation (BMO) function.

How to cite

top

Wang, Dinghuai. "Notes on commutator on the variable exponent Lebesgue spaces." Czechoslovak Mathematical Journal 69.4 (2019): 1029-1037. <http://eudml.org/doc/294574>.

@article{Wang2019,
abstract = {We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss $[b,T]$ is bounded on the variable exponent Lebesgue spaces, then $b$ is a bounded mean oscillation (BMO) function.},
author = {Wang, Dinghuai},
journal = {Czechoslovak Mathematical Journal},
keywords = {bounded mean oscillation; commutator; Hardy space; variable exponent Lebesgue space},
language = {eng},
number = {4},
pages = {1029-1037},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Notes on commutator on the variable exponent Lebesgue spaces},
url = {http://eudml.org/doc/294574},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Wang, Dinghuai
TI - Notes on commutator on the variable exponent Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1029
EP - 1037
AB - We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss $[b,T]$ is bounded on the variable exponent Lebesgue spaces, then $b$ is a bounded mean oscillation (BMO) function.
LA - eng
KW - bounded mean oscillation; commutator; Hardy space; variable exponent Lebesgue space
UR - http://eudml.org/doc/294574
ER -

References

top
  1. Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) Zbl1213.42063MR2414490DOI10.4171/RMI/511
  2. Chaffee, L., Cruz-Uribe, D., 10.7153/mia-2018-21-01, Math. Inequal. Appl. 21 (2018), 1-16. (2018) Zbl1384.42012MR3716205DOI10.7153/mia-2018-21-01
  3. Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
  4. Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
  5. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  6. Janson, S., 10.1007/BF02386000, Ark. Mat. 16 (1978), 263-270. (1978) Zbl0404.42013MR0524754DOI10.1007/BF02386000
  7. Komori, Y., 10.1007/s00013-003-0545-2, Arch. Math. 81 (2003), 318-326. (2003) Zbl1053.42020MR2013263DOI10.1007/s00013-003-0545-2
  8. Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951
  9. Li, J., Wick, B. D., 10.4153/CMB-2017-033-9, Canad. Math. Bull. 60 (2017), 571-585. (2017) Zbl1372.42018MR3679731DOI10.4153/CMB-2017-033-9
  10. Uchiyama, A., 10.2140/pjm.1981.92.453, Pac. J. Math. 92 (1981), 453-468. (1981) Zbl0493.42032MR0618077DOI10.2140/pjm.1981.92.453

NotesEmbed ?

top

You must be logged in to post comments.